Isomer-selective aromatization process and catalyst

Chemistry of hydrocarbon compounds – Aromatic compound synthesis – By ring formation from nonring moiety – e.g. – aromatization,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C585S418000, C208S138000

Reexamination Certificate

active

06177601

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a process and catalyst for the conversion of hydrocarbons, and more specifically for the aromatization of gasoline-range hydrocarbons.
2. General Background
The catalytic reforming of hydrocarbon feedstocks in the gasoline range is an important commercial process, practiced in nearly every significant petroleum refinery in the world to produce aromatic intermediates for the petrochemical industry or gasoline components with high resistance to engine knock. Demand for aromatics is growing more rapidly than the supply of feedstocks for aromatics production. Many large aromatics complexes have been completed recently or are under construction or planned which emphasize high yields of paraxylene as feedstock for polyester production to serve this burgeoning market. The catalytic reforming unit therefore must operate more efficiently at higher severity in order to meet these increasing needs for chemical aromatics while conserving feedstocks. This trend creates a need for more effective aromatization processes and catalysts.
Catalytic reforming generally is applied to a feedstock rich in paraffins and naphthenic hydrocarbons and is effected through diverse reactions: dehydrogenation of naphthenes to aromatics, dehydrocyclization of paraffins, isomerization of paraffins and naphthenes, dealkylation of alkylaromatics, hydrocracking of paraffins to light hydrocarbons, and formation of coke which is deposited on the catalyst. Increased aromatics and gasoline-octane needs have turned attention to the paraffin-dehydrocyclization reaction, which is less favored thermodynamically and kinetically in bifunctional reforming than other aromatization reactions. Considerable leverage exists for increasing desired product yields from aromatization by promoting the dehydrocyclization reaction over the competing hydrocracking reaction while minimizing the formation of coke.
The effectiveness of aromatization catalysts comprising a non-acidic L-zeolite and a platinum-group metal for dehydrocyclization of paraffins is well known in the art. The use of these aromatization catalysts to produce aromatics from paraffinic raffinates as well as naphthas has been disclosed. Commercialization has been slow and is limited in scope in light of special pretreating required to obtain the relatively high selectivity to aromatics that this technology features. Further, such catalysts yield a high proportion of benzene and toluene compared to the more desired xylenes. Thus, there is a particular need for further improvements in selectivity as well as activity and stability of such dehydrocyclization catalysts.
The art discloses reforming with a broad range of catalysts containing large-pore zeolites and Group VIII metals. U.S. Pat. No. 4,104,320 (Bernard et al.) discloses dehydrocyclization with potassium-form L-zeolite charged with one or more dehydrogenating metals of Group VIII and another metal such as rhenium, iridium, tin or germanium. Bernard et al. teach that the other metal preferably is introduced at the same time as platinum or palladium and does not suggest such metals in the framework of the L-zeolite.
U.S. Pat. No. 4,990,710 (Dessau et al.) teaches dehydrogenation to yield aromatics using a tin-modified microporous crystalline silicate. U.S. Pat. No. 5,518,708 (Skeels et al.) teaches a molecular sieve having tin or chromium as framework tetrahedral oxide units, with zeolites Y and L being among the disclosed sieves. The use of such sieves is disclosed generally for a plethora of hydrocarbon-conversion, separation and oxidative combustion processes.
None of the above references discloses aromatization with a catalyst containing a bound nonacidic large-pore molecular sieve containing framework tin and a platinum-group metal component.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a catalytic system and aromatization process effective for the dehydrocyclization of paraffins and/or olefins with high catalyst selectivity and stability.
This invention is based on the discovery that a bound L-zeolite catalyst containing tin introduced via secondary synthesis and platinum results in substantial yield improvements in an aromatization process.
A broad embodiment of the present invention is an aromatization process, selective for dehydrocyclization of one or both of paraffin and olefin isomers to corresponding aromatic isomers, using a catalyst comprising a bound nonacidic large-pore molecular sieve having a unit empirical formula on an anhydrous basis of mA:(Sn
w
Al
x
Si
y
)O
2
; where A is at least one exchangeable cation selected from the group consisting of alkali and alkaline earth metals, “m” is the mole fraction of A and varies from about 0.01 to about 0.49, “w” is the mole fraction of tin and varies from about 0.01 to about 0.49, “X” is the mole fraction of aluminum and varies from about 0.01 to about 0.49, and “y” is the mole fraction of silicon and varies from about 0.50 to about 0.98. The tin preferably is introduced into the sieve via secondary synthesis, especially via a solution of a fluoro salt of tin. The molecular sieve is bound using an inorganic-oxide binder which preferably comprises one or both of silica and alumina. The catalyst comprises at least one platinum-group metal component, preferably comprising platinum. Optimally, the molecular sieve comprises potassium-form L-zeolite.
The aromatization process converts paraffins and/or olefins in a hydrocarbon feedstock with high selectivity to obtain an aromatized. Operating conditions comprising low operating pressures, optimally between about 100 and 300 kPa, are used to advantage. Preferably one or more paraffinic and/or olefinic isomers are aromatized to an aromatized product containing one or more corresponding aromatic isomers of the same carbon number in high yield. Heptanes/heptenes and octanes/octenes are efficiently aromatized to toluene and C
8
aromatics, respectively. Specific aromatic isomers may be produced by aromatization of individual paraffinic or olefinic isomers, e.g., paraxylene from 2,5-dimethylhexane or 2,5-dimethylhexene.
These as well as other objects and embodiments will become apparent from the detailed description of the invention.


REFERENCES:
patent: 4104320 (1978-08-01), Bernard et al.
patent: 4634518 (1987-01-01), Buss et al.
patent: 4990710 (1991-02-01), Dessau et al.
patent: 5124497 (1992-06-01), Dessau et al.
patent: 5518708 (1996-05-01), Skeels et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isomer-selective aromatization process and catalyst does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isomer-selective aromatization process and catalyst, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isomer-selective aromatization process and catalyst will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2441051

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.