Isolation of neurotrophins from a mixture containing other...

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Hormones – e.g. – prolactin – thymosin – growth factors – etc.

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S324000, C530S350000, C530S412000, C530S416000, C530S417000, C435S069100, C435S069400, C435S070100, C435S071100

Reexamination Certificate

active

06423831

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to an improved method for purifying neurotrophins, particularly those in the NGF-family, more particularly nerve growth factor (NGF) and neurotrophin-4/5 (NT-4/5), and neurotrophin-3 (NT-3) from variants, impurities, and contaminants associated therewith, particularly when produced by bacterial or mammalian cell fermentation.
2. Background
The production of large quantities of relatively pure, biologically active polypeptides and proteins is important economically for the manufacture of human and animal pharmaceutical formulations, enzymes, and other specialty chemicals. For production of many proteins, recombinant DNA techniques have become the method of choice because large quantities of exogenous proteins can be expressed in mammalian host cells and, bacteria, and other host cells.
The primary structure of a mammalian NGF (mouse NGF) was first elucidated by Angeletti and Bradshaw,
Proc. Natl. Acad. Aci. USA
68:2417 (1971). The primary structure of its precursor, pre-pro-NGF, has been deduced from the nucleotide sequence of the mouse NGF cDNA (Scott et al.
Nature
302:538 (1983); Ullrich et al.
Nature
303:821 (1983)).
The homologous human NGF (hNGF) gene has also been identified (Ullrich,
Symp. on Quan. Biol., Cold Spring Harbor
48:435 (1983); U.S. Pat. No. 5,288,622, issued Feb. 22, 1994, which is incorporated herein by reference). Its homology to the mouse NGF is about 90% and 87%, on the amino acid and nucleotide sequence levels, respectively. Due to the scarcity of naturally-occurring human NGF, it has not been prepared from natural sources in quantities sufficient to biochemically characterize in fine detail.
Additional neurotrophic factors related to NGF have since been identified. These include brain-derived neurotrophic factor (BDNF) (Leibrock, et al.,
Nature,
341:149-152 (1989)), neurotrophin-3 (NT-3) (Kaisho, et al.,
FEBS Lett.,
266:187 (1990); Maisonpierre, et al.,
Science,
247:1446 (1990); Rosenthal, et al.,
Neuron,
4:767 (1990)), and neurotrophin 4/5 (NT-4/5) (Berkmeier, et al.,
Neuron,
7:857-866 (1991)). GDNF, a distant member of the TGF-&bgr; super family, and neurturin (“NTN”) are two, recently identified, structurally related, potent survival factors for sympathetic sensory and central nervous system neurons (Lin et al.
Science
260:1130-1132 (1993); Henderson et al.
Science
266:1062-1064 (1994); Buj-Bello et al.,
Neuron
15:821-828 (1995); Kotzbauer et al.
Nature
384:467-470 (1996)).
Producing recombinant protein involves transfecting host cells with DNA encoding the protein and growing the cells under conditions favoring expression of the recombinant protein. The prokaryote
E. coli
is has been a favored host because it can be made to produce recombinant proteins in high yields at low cost. Numerous U.S. patents on general bacterial expression of DNA encoding proteins exist, including U.S. Pat. No. 4,565,785 on a recombinant DNA molecule comprising a bacterial gene for an extracellular or periplasmic carrier protein and non-bacterial gene; U.S. Pat. No. 4,673,641 on co-production of a foreign polypeptide with an aggregate-forming polypeptide; U.S. Pat. No. 4,738,921 on an expression vector with a trp promoter/operator and trp LE fusion with a polypeptide such as IGF-I; U.S. Pat. No. 4,795,706 on expression control sequences to include with a foreign protein; and U.S. Pat. No. 4,710,473 on specific circular DNA plasmids such as those encoding IGF-I.
Genetically engineered bio-pharmaceuticals are typically purified from a supernatant containing a variety of diverse host cell contaminants. NGF, in particular, has been reportedly purified to varying extent with varying degrees of effort and success using a number of different methods. See for example, Longo et al., IBRO Handbook, vol. 12, pp 3-30 (1989); U.S. Pat. No. 5,082,774, which discloses CHO cell production of NGF; Bruce and Heinrich (
Neurobio. Aging
10:89-94 (1989); Schmelzer et al.
J. Neurochem.
59:1675-1683 (1992); Burton et al.,
J. Neurochem.
59:1937-1945 (1992). These efforts have been primarily at laboratory scale.
However, preparative isolation of recombinant human NGF resulting in pharmaceutical purity and high yield, essentially free of variants, has eluded the art.
Accordingly, there is a need in the art for an efficient protocol for selectively separating neurotrophins, particularly NGF and NGF-family of neurotrophins, from their variants and other molecules, and from other polypeptides with high pI. The process of purifying neurotrophins at large scale should be applicable to starting material from varying sources, including fermentation broth, lysed bacterial or mammalian cells, to supply clinical needs. Furthermore, as the present inventors have discovered previously unknown, difficult-to-separate neurotrophin variants, for example NGF variants, the methods presented herein are particularly useful to provide commercially useful amounts of recombinant neurotrophins, including human NGF (rhNGF), rhNT-3, and rhNT-4/5 and desirable genetically engineered mutants thereof, that are substantially free of undesirable variants. These and other objects of the invention will now be apparent to one of ordinary skill in the art.
SUMMARY
In one embodiment of the invention a process for purifying a neurotrophin, particularly one in the NGF-family, including NGF, NT-3, NT-4/5, and BDNF which share recognition by a highly homologous family of receptors (trks), preferably rhNGF, rNT-3, rhNT-4/5, rhBDNF or desirable genetically engineered forms thereof, by the use of hydrophobic interaction chromatography (HIC) is provided. In view of the discovery by the present inventors of certain undesirable neurotrophin variants arising from recombinant production of a neurotrophin, as reported herein, the use of HIC can separate chemically different or even misfolded forms of a neurotrophin from the desired correctly folded, intact neurotrophin. Variants that can be removed are those that differ from the mature, correctly folded neurotrophin in hydrophobicity, including partially processed precursor sequences, glycosylated mature and precursor-containing forms (when present from eukaryotic cell culture), and misfolded and partially folded variants (generally from bacterial cell culture when in vitro folding steps are used). For example, HIC is particularly useful to remove partially processed precursor sequences of NGF, glycosylated species of NGF and precursor (when present from eukaryotic cell culture), and misfolded and partially folded variants (generally from bacterial cell culture and in vitro folding steps) from mixtures of mature NGF. NGF has one N-linked glycosylation site at Asn45. In the case of bacteria-expressed, refolded rhNT-4/5, HIC separates correctly folded NT-4/5 from incorrectly folded forms. As a result of the process described herein the neurotrophin is essentially free of these variants. For neurotrophin purification, preferably the HIC resin functional group is a phenyl group, while octyl and butyl groups can be useful. Particularly preferred embodiments include HIC resins Phenyl Toyopearl, Phenyl Sepharose Fast Flow Low Substitution, TSK-Phenyl 5PW, or the like.
In another embodiment is provided a process for purifying a neurotrophin, particularly one in the NGF-family, preferably rhNGF, rNT-3, rhNT-4/5 or desirable genetically engineered forms thereof, by the use of preparative cation-exchange chromatography, which separates charge-modified variants, such as oxidized, isoasp and deamidated forms from mature neurotrophin. Particularly preferred embodiments use SP-Sepharose High Performance, Fractogel EMD SO3, or polyaspartic acid resin, of which PolyCAT A is particularly preferred. Most preferably at large scale SP-Sepharose High Performance or Fractogel EMD SO3 resins are used.
In yet another embodiment of the invention both HIC and cation-exchange chromatography are used to prepare a composition of a desired neurotrophin, for example recombinant mature NGF, preferably human NGF, that is substa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isolation of neurotrophins from a mixture containing other... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isolation of neurotrophins from a mixture containing other..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolation of neurotrophins from a mixture containing other... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2902525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.