Isolation of lineage-restricted neuronal precursors

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Primate cell – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000

Reexamination Certificate

active

06734015

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to lineage-restricted intermediate precursor cells and methods of making thereof More particularly, the invention relates to neuronal-restricted precursors (NRP's) isolated from mammalian embryos or mammalian neuroepithelial stem cells. These neuronal-restricted precursors are capable of self-renewal and differentiation into neurons, but not into glia, i.e. astrocytes and oligodendrocytes. Methods of generating, isolating, and culturing such neuronal-restricted precursor cells are also described.
Multipotent cells with the characteristics of stem cells have been identified in several regions of the central nervous system and at several developmental stages. F. H. Gage et al., Isolation, Characterization and Use of Stem Cells from the CNS, 18 Ann. Rev. Neurosci. 159-92 (1995); M. Marvin & R. McKay, Multipotential Stem Cells in the Vertebrate CNS, 3 Semin. Cell. Biol. 401-11 (1992); R. P. Skoff, The Lineages of Neuroglial Cells, 2 The Neuroscientist 335-44 (1996). These cells, often referred to as neuroepithelial stem cells (NEP cells), have the capacity to undergo self renewal and to differentiate into neurons, oligodendrocytes, and astrocytes, thus representing multipotent stem cells. A. A. Davis & S. Temple, A Self-Renewing Multipotential Stem Cell in Embryonic Rat Cerebral Cortex, 362 Nature 363-72 (1994); A. G. Gritti et al., Multipotential Stem Cells from the Adult Mouse Brain Proliferate and Self-Renew in Response to Basic Fibroblast Growth Factor, 16 J. Neurosci. 1091-1100 (1996); B. A. Reynolds et al., A Multipotent EGF-Responsive Striatal Embryonic Progenitor Cell Produces Neurons and Astrocytes, 12 J. Neurosci. 4565-74 (1992); B. A. Reynolds & S. Weiss, Clonal and Population Analyses Demonstrate that an EGF-Responsive Mammalian Embryonic CNS Precursor is a Stem Cell, 175 Developmental Biol. 1-13 (1996); B. P. Williams et al., The Generation of Neurons and Oligodendrocytes from a Common Precursor Cell, 7 Neuron 685-93 (1991).
The nervous system also contains precursor cells with restricted differentiation potentials. T. J. Kilpatrick & P. F. Bartlett, Cloned Multipotential Precursors from the Mouse Cerebrum Require FGF-2, Whereas Glial Restricted Precursors are Stimulated with Either FGF-2 or EGF, 15 J. Neurosci. 3653-61 (1995); J. Price et al., Lineage Analysis in the Vertebrate Nervous System by Retrovirus-Mediated Gene Transfer, 84 Developmental Biol. 156-60 (1987); B. A. Reynolds et al., supra; B. A. Reynolds & S. Weiss, supra; B. Williams, Precursor Cell Types in the Germinal Zone of the Cerebral Cortex, 17 BioEssays 391-93 (1995); B. P. Williams et al., supra. The relationship between multipotent stem cells and lineage restricted precursor cells is still unclear. In principal, lineage restricted cells could be derived from multipotent cells, but this is still a hypothetical possibility in the nervous system with no direct experimental evidence. Further, no method of purifying such precursors from multipotent cells has been described.
As has been shown in copending U.S. patent application Ser. No. 08/852/744, entitled “Generation, Characterization, and Isolation of Neuroepithelial Stem Cells and Lineage Restricted Intermediate Precursor,” filed May 7, 1997, now U.S. Pat. No. 5,361,996, hereby incorporated by reference in its entirety, NEP cells grow on fibronectin and require fibroblast growth factor (FGF) and an as yet uncharacterized component present in chick embryo extract (CEE) to proliferate and maintain an undifferentiated phenotype in culture. The growth requirements of NEP cells are different from neurospheres isolated from E14.5 cortical ventricular zone cells. B. A. Reynolds et al., supra; B. A. Reynolds & S. Weiss, supra; WO 9615226; WO 9615224; WO 9609543; WO 9513364; WO 9416718; WO 9410292; WO 9409119. Neurospheres grow in suspension culture and do not require CEE or FGF, but are dependent on epidermal growth factor (EGF) for survival. FGF itself is not sufficient for long term growth of neurospheres, though FGF may support their growth transiently. NEP cells, however, grow in adherent culture, are FGF dependent, do not express detectable levels of EGF receptors, and are isolated at a stage of embryonic development prior to which it has been possible to isolate neurospheres. Thus, NEP cells may represent a multipotent precursor characteristic of the brain stem and spinal cord, while neurospheres may represent a stem cell more characteristic of the cortex. Nonetheless, NEP cells provide a model system for studying the principles of lineage restriction from multipotent stem cells or precursor cells of the central nervous system. The principles elucidated from the study of NEP cells are expected to be broadly applicable to all CNS precursor cells sufficiently multipotent to generate both neurons and glia. Thus, the present application is intended to be applicable to any CNS precursor cells regardless of their site of derivation as long as they are able to differentiate to both neurons and glial cells.
U.S. Pat. No. 5,589,376, to D. J. Anderson and D. L. Stemple, discloses mammalian neural crest stem cells and methods of isolation and clonal propagation thereof, but fails to disclose cultured NEP cells, cultured lineage restricted precursor cells, and methods of generating, isolating, and culturing thereof. Neural crest cells differentiate into neurons and glia of the peripheral nervous system (PNS), whereas the neuroepithelial stem cells differentiate into neurons and glia of the central nervous system (CNS).
The neuron-restricted precursor cells described herein are distinct from the NEP cells, neurospheres, and neural crest stem cells that have been described elsewhere. NEP cells are capable of differentiating into neurons or glia whereas NRP's can differentiate into neurons, but not glia, and NEP cells and NRP's display distinct cell markers. As mentioned above, neurospheres grow in suspension culture and do not require CEE or FGF, but are dependent on EGF for survival, whereas NRP cells grow in adherent culture and do not express detectable levels of EGF receptors. Further, neural crest cells differentiate into neurons and glia of the peripheral nervous system (PNS), whereas NRP cells differentiate into neurons of the central nervous system (CNS). NRP cells express polysialated or embryonic neural cell adhesion molecule (E-NCAM), but NEP cells, neurospheres, and neural crest cells do not. Therefore, NRP cells are different in their proliferative potential, expression of cell markers, and nutritional requirements from these other cell types.
The ability to isolate and grow mammalian neuronal-restricted precursor cells in vitro allows for of using pure populations of neurons for transplantation, discovery of genes specific to selected stages of development, generation of cell-specific antibodies for therapeutic and diagnostic uses such as for targeted gene therapy, and the like. Further, NRP cells can be used to generate subpopulations of neurons with specific properties, i.e. motoneurons and other neuronal cells for analyzing neurotransmitter functions and small molecules in high throughput assays. Moreover, the methods of obtaining NRP cells from NEP cells provides for a ready source of a large number of post-mitotic neurons. Post-mitotic cells obtained from a tumor cell line are already being commercially marketed (e.g., Clontech, Palo Alto, Calif.). The present invention is also necessary to understand how multipotent neuroepithelial stem cells become restricted to the various neuroepithelial derivatives. In particular, culture conditions that allow the growth and self-renewal of mammalian neuronal-restricted precursor cells are desirable so that the particulars of the development of these mammalian stem cells can be ascertained. This is desirable because a number of tumors of neuroepithelial derivatives exist in mammals, particularly humans. Knowledge of mammalian neuroepithelial stem cell development is therefore needed to understand these disorders in humans.
In view of the fore

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isolation of lineage-restricted neuronal precursors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isolation of lineage-restricted neuronal precursors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolation of lineage-restricted neuronal precursors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3223503

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.