Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector
Reexamination Certificate
1999-06-25
2003-04-15
Huff, Sheela (Department: 1642)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
C424S185100, C424S193100, C530S327000, C530S328000, C530S350000, C514S002600
Reexamination Certificate
active
06548064
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the isolation and cloning of genes which are members of the “SSX” family, which is discussed herein, and the uses thereof, including determination of cancer. Also a part of the invention are peptides derived from these SSX genes, as well as from the NY-ESO-1 gene. These peptides stimulate proliferation of cytolytic T cells, and thus are useful as markers for presence of disorders such as cancer, for HLA-A2 cells, and as therapeutic agents for treating cancer.
BACKGROUND AND PRIOR ART
It is fairly well established that many pathological conditions, such as infections, cancer, autoimmune disorders, etc., are characterized by the inappropriate expression of certain molecules. These molecules thus serve as “markers” for a particular pathological or abnormal condition. Apart from their use as diagnostic “targets”, i.e., materials to be identified to diagnose these abnormal conditions, the molecules serve as reagents which can be used to generate diagnostic and/or therapeutic agents. A by no means limiting example of this is the use of cancer markers to produce antibodies specific to a particular marker. Yet another non-limiting example is the use of a peptide which complexes with an MHC molecule, to generate cytolytic T cells against abnormal cells.
Preparation of such materials, of course, presupposes a source of the reagents used to generate these. Purification from cells is one laborious, far from sure method of doing so. Another preferred method is the isolation of nucleic acid molecules which encode a particular marker, followed by the use of the isolated encoding molecule to express the desired molecule.
To date, two strategies have been employed for the detection of such antigens, in e.g., human tumors. These will be referred to as the genetic approach and the biochemical approach. The genetic approach is exemplified by, e.g., dePlaen et al., Proc. Natl. Sci. USA 85: 2275 (1988), incorporated by reference. In this approach, several hundred pools of plasmids of a cDNA library obtained from a tumor are transfected into recipient cells, such as COS cells, or into antigen-negative variants of tumor cell lines. Transfectants are screened for the expression of tumor antigens via their ability to provoke reactions by anti-tumor cytolytic T cell clones. The biochemical approach, exemplified by, e.g., Mandelboim, et al., Nature 369: 69 (1994) incorporated by reference, is based on acidic elution of peptides which have bound to MHC-class I molecules of tumor cells, followed by reversed-phase high performance liquid chromography (HPLC). Antigenic peptides are identified after they bind to empty MHC-class I molecules of mutant cell lines, defective in antigen processing, and induce specific reactions with cytotoxic T-lymphocytes. These reactions include induction of CTL proliferation, TNF release, and lysis of target cells, measurable in an MTT assay, or a
51
Cr release assay.
These two approaches to the molecular definition of antigens have the following disadvantages: first, they are enormously cumbersome, time-consuming and expensive; second, they depend on the establishment of cytotoxic T cell lines (CTLs) with predefined specificity; and third, their relevance in vivo for the course of the pathology of disease in question has not been proven, as the respective CTLs can be obtained not only from patients with the respective disease, but also from healthy individuals, depending on their T cell repertoire.
The problems inherent to the two known approaches for the identification and molecular definition of antigens is best demonstrated by the fact that both methods have, so far, succeeded in defining only very few new antigens in human tumors. See, e.g., van der Bruggen et al., Science 254: 1643-1647 (1991); Brichard et al., J. Exp. Med. 178: 489-495 (1993); Coulie, et al., J. Exp. Med. 180: 35-42 (1994); Kawakami, et al., Proc. Natl. Acad. Sci. USA 91: 3515-3519 (1994).
Further, the methodologies described rely on the availability of established, permanent cell lines of the cancer type under consideration. It is very difficult to establish cell lines from certain cancer types, as is shown by, e.g., Oettgen, et al., Immunol. Allerg. Clin. North. Am. 10: 607-637 (1990). It is also known that some epithelial cell type cancers are poorly susceptible to CTLs in vitro, precluding routine analysis. These problems have stimulated the art to develop additional methodologies for identifying cancer associated antigens.
One key methodology is described by Sahin, et al., Proc. Natl. Acad. Sci. USA 92: 11810-11913 (1995), incorporated by reference. Also, see U.S. patent applications Ser. No. 08/580,980, and filed on Jan. 3, 1996, and U.S. Pat. No. 5,698,396. All three of these references are incorporated by reference. To summarize, the method involves the expression of cDNA libraries in a prokaryotic host. (The libraries are secured from a tumor sample). The expressed libraries are then immunoscreened with absorbed and diluted sera, in order to detect those antigens which elicit high titer humoral responses. This methodology is known as the SEREX method (“Serological identification of antigens by Recombinant Expression Cloning”). The methodology has been employed to confirm expression of previously identified tumor associated antigens, as well as to detect new ones. See the above referenced patent applications and Sahin, et al., supra as well as Crew, et al., EMBO J 144: 2333-2340 (1995).
The SEREX methodology has been applied to esophageal cancer samples, and an esophageal cancer associated antigen has now been identified, and its encoding nucleic acid molecule isolated and cloned, as per U.S. patent application Ser. No. 08/725,182, filed Oct. 3, 1996, incorporated by reference herein.
The relationship between some of the tumor associated genes and a triad of genes, known as the SSX genes, is under investigation. See Sahin, et al., supra; Tureci, et al., Cancer Res 56:4766-4772 (1996). One of these SSX genes, referred to as SSX2, was identified, at first, as one of two genes involved in a chromosomal translocation event (t(X; 18)(p11.2; q 11.2)), which is present in 70% of synovial sarcomas. See Clark, et al., Nature Genetics 7:502-508 (1994); Crew et al., EMBO J 14:2333-2340 (1995). It was later found to be expressed in a number of tumor cells, and is now considered to be a tumor associated antigen referred to as HOM-MEL-40 by Tureci, et al, supra. Its expression to date has been observed in cancer cells, and normal testis only. Thus parallels other members of the “CT” family of tumor antigens, since they are expressed only in cancer and testis cells. Crew et al. also isolated and cloned the SSX1 gene, which has 89% nucleotide sequence homology with SSX2. Sequence information for SSX1 and SSX2 is presented as SEQ ID NOS: 1 and 2 respectively. See Crew et al., supra. Additional work directed to the identification of SSX genes has resulted in the identification of SSX3, as is described by DeLeeuw, et al., Cytogenet. Genet 73:179-183 (1996). The fact that SSX presentation parallels other, CT antigens suggested to the inventors that other SSX genes might be isolated. The parent application, supra discloses this work, as does Gure, et al.
Int. J. Cancer
72:965-971 (1997), incorporated by reference.
With respect to additional literature on the SSX family, most of it relates to SSX1. See PCT Application W/96 02641A2 to Cooper, et al, detailing work on the determination of synovial sarcoma via determination of SSX1 or SSX2. Also note DeLeeuw, et al. Hum. Mol. Genet 4(6):1097-1099 (1995). also describing synovial sarcoma and SYT-SSX1 or SSX2 translocation. Also see Kawai, et al, N. Engl. J. Med 338(3):153-160 (1998); Noguchi, et al. Int. J. Cancer 72(6):995-1002 (1997), Hibshoosh, et al., Semin. Oncol 24(5):515-525 (1997), Shipley, et al., Am. J. Pathol. 148(2):559-567 (1996); Fligman, et al. Am. J. Pathol. 147(6); 1592-1599 (1995). Also see Chand, et al., Genomics 30(3):545-552 (1995), Brett, et al., Hum. Mol Genet 6(9): 1559-1564 (1997), deBruyn, et a
Pfreundschuh Michael
Rammensee Hans Georg
Sahin Ugur
Stevanovic Stefan
Tureci Ozlem
Fulbright & Jaworski LLP.
Huff Sheela
Hunt Jennifer
Ludwig Institute for Cancer Research
LandOfFree
Isolated peptides consisting of amino acid sequences found... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Isolated peptides consisting of amino acid sequences found..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolated peptides consisting of amino acid sequences found... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3042040