Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
1999-09-14
2001-07-03
Zitomer, Stephanie W. (Department: 1655)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C536S024310, C536S024330, C536S063000, C536S063000, C435S006120
Reexamination Certificate
active
06255470
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an antigen associated with esophageal cancer, and the nucleic acid molecule encoding it, as well as the uses of these.
BACKGROUND AND PRIOR ART
It is fairly well established that many pathological conditions, such as infections, cancer, autoimmune disorders, etc., are characterized by the inappropriate expression of certain molecules. These molecules thus serve as “markers” for a particular pathological or abnormal condition. Apart from their use as diagnostic “targets”, i.e., materials to be identified to diagnose these abnormal conditions, the molecules serve as reagents which can be used to generate diagnostic and/or therapeutic agents. A by no means limiting example of this is the use of cancer markers to produce antibodies specific to a particular marker. Yet another non-limiting example is the use of a peptide which complexes with an MHC molecule, to generate cytolytic T cells against abnormal cells.
Preparation of such materials, of course, presupposes a source of the reagents used to generate these. Purification from cells is one laborious, far from sure method of doing so. Another preferred method is the isolation of nucleic acid molecules which encode a particular marker, followed by the use of the isolated encoding molecule to express the desired molecule.
To date, two strategies have been employed for the detection of such antigens, in e.g., human tumors. These will be referred to as the genetic approach and the biochemical approach. The genetic approach is exemplified by, e.g., dePlaen et al., Proc. Natl. Sci. U.S.A. 85: 2275 (1988), incorporated by reference. In this approach, several hundred pools of plasmids of a cDNA library obtained from a tumor are transfected into recipient cells, such as COS cells, or into antigen-negative variants of tumor cell lines which are tested for the expression of the specific antigen. The biochemical approach, exemplified by, e.g., Kawakami, et al., Nature 369: 69 (1994) incorporated by reference, is based on acidic elution of peptides which have bound to MHC-class I molecules of tumor cells, followed by reversed-phase high performance liquid chromography (HPLC). Antigenic peptides are identified after they bind to empty MHC-class I molecules of mutant cell lines, defective in antigen processing, and induce specific reactions with cytotoxic T-lymphocytes. These reactions include induction of CTL proliferation, TNF release, and lysis of target cells, measurable in an MTT assay, or a
51
Cr release assay.
These two approaches to the molecular definition of antigens have the following disadvantages: first, they are enormously cumbersome, time-consuming and expensive; second, they depend on the establishment of cytotoxic T cell lines (CTLs) with predefined specificity; and third, their relevance in vivo for the course of the pathology of disease in question has not been proven, as the respective CTLs can be obtained not only from patients with the respective disease, but also from healthy individuals, depending on their T cell repertoire.
The problems inherent to the two known approaches for the identification and molecular definition of antigens is best demonstrated by the fact that both methods have, so far, succeeded in defining only very few new antigens in human tumors. See, e.g., van der Bruggen et al., Science 254:1643-1647 (1991); Brichard et al., J. Exp. Med. 178: 489-495 (1993); Coulie, et al., J. Exp. Med. 180: 35-42 (1994); Kawakami, et al., Proc. Natl. Acad. Sci. U.S.A. 91: 3515-3519 (1994).
Further, the methodologies described rely on the availability of established, permanent cell lines of the cancer type under consideration. It is very difficult to establish cell lines from certain cancer types, as is shown by, e.g., Oettgen, et al., Immunol. Allerg. Clin. North. Am. 10: 607-637 (1990). It is also known that some epithelial cell type cancers are poorly susceptible to CTLs in vitro, precluding routine analysis. These problems have stimulated the art to develop additional methodologies for identifying cancer associated antigens.
One key methodology is described by Sahin, et al., Proc. Natl. Acad. Sci. USA 92: 11810-11913 (1995), incorporated by reference. Also, see U.S. patent applications Ser. No. 08/580,980, and application Ser. No. 08/479,328, filed on Jun. 7, 1995 and Jan. 3, 1996, respectively. All three of these references are incorporated by reference. To summarize, the method involves the expression of cDNA libraries in a prokaryotic host. (The libraries are secured from a tumor sample). The expressed libraries are then immnoscreened with absorbed and diluted sera, in order to detect those antigens which elicit high titer humoral responses. This methodology is known as the SEREX method (“Serological identification of antigens by Recombinant Expression Cloning”). The methodology has been employed to confirm expression of previously identified tumor associated antigens, as well as to detect new ones. See the above referenced patent applications and Sahin, et al., supra, as well as Crew, et al., EMBO J 144:2333-2340 (1995).
The SEREX methodology has been applied to esophageal cancer samples, and an esophageal cancer associated antigen has now been identified, and its encoding nucleic acid molecule isolated and cloned. This, inter alia, is the subject of the invention, which is described in more detail in the disclosure which follows.
REFERENCES:
patent: 5804381 (1998-09-01), Chen et al.
Chen Yao-tseng
Gure Ali
Old Lloyd J.
Scanlan Matthew
Forman B J
Fulbright & Jaworski LLP
Memorial Sloan-Kettering Cancer Center
Zitomer Stephanie W.
LandOfFree
Isolated nucleic acid molecule encoding an esophageal cancer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Isolated nucleic acid molecule encoding an esophageal cancer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolated nucleic acid molecule encoding an esophageal cancer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2447313