Isolated human drug-metabolizing proteins, nucleic acid...

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S252300, C435S320100, C536S023200

Reexamination Certificate

active

06420150

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of drug-metabolizing proteins that are related to the sulfotransferase drug-metabolizing enzyme subfamily, recombinant DNA molecules and protein production. The present invention specifically provides novel drug-metabolizing peptides and proteins and nucleic acid molecules encoding such protein molecules for use in the development of human therapeutics and human therapeutic development.
BACKGROUND OF THE INVENTION
Drug-Metabolizing Proteins
Induction of drug-metabolizing enzymes (“DMEs”) is a common biological response to xenobiotics, the mechanisms and consequences of which are important in academic, industrial, and regulatory areas of pharmacology and toxicology.
For most drugs, drug-metabolizing enzymes determine how long and how much of a drug remains in the body. Thus, developers of drugs recognize the importance of characterizing a drug candidate's interaction with these enzymes. For example, polymorphisms of the drug-metabolizing enzyme CYP2D6, a member of the cytochrome p450 (“CYP”) superfamily, yield phenotypes of slow or ultra-rapid metabolizers of a wide spectrum of drugs including antidepressants, antipsychotics, beta-blockers, and antiarrhythmics. Such abnormal rates of drug metabolism can lead to drug ineffectiveness or to systemic accumulation and toxicity.
For pharmaceutical scientists developing a candidate drug, it is important know as early as possible in the design phase which enzymes metabolize the drug candidate and the speed with which they do it. Historically, the enzymes on a drug's metabolic pathway were determined through metabolism studies in animals, but this approach has now been largely supplanted by the use of human tissues or cloned drug-metabolizing enzymes to provide insights into the specific role of individual forms of these enzymes. Using these tools, the qualitative and quantitative fate of a drug candidate can be predicted prior to its first administration to humans. As a consequence, the selection and optimization of desirable characteristics of metabolism are possible early in the development process, thus avoiding unanticipated toxicity problems and associated costs subsequent to the drug's clinical investigation. Moreover, the effect of one drug on another's disposition can be inferred.
Known drug-metabolizing enzymes include the cytochrome p450 (“CYP”) superfamily, N-acetyl transferases (“NAT”), UDP-glucuronosyl transferases (“UGT”), methyl transferases, alcohol dehydrogenase (“ADH”), aldehyde dehydrogenase (“ALDH”), dihydropyrimidine dehydrogenase (“DPD”), NADPH:quinone oxidoreductase (“NQO” or “DT diaphorase”), catechol O-methyltransferase (“COMT”), glutathione S-transferase (“GST”), histamine methyltransferase (“HMT”), sulfotransferases (“ST”), thiopurine methyltransferase (“TPMT”), and epoxide hydroxylase. Drug-metabolizing enzymes are generally classified into two phases according to their metabolic function. Phase I enzymes catalyze modification of functional groups, and phase II enzymes catalyze conjugation with endogenous substituents. These classifications should not be construed as exclusive nor exhaustive, as other mechanisms of drug metabolism have been discovered. For example, the use of active transport mechanisms been characterized as part of the process of detoxification.
Phase I reactions include catabolic processes such as deamination of aminases, hydrolysis of esters and amides, conjugation reactions with, for example, glycine or sulfate, oxidation by the cytochrome p450 oxidation/reduction enzyme system and degradation in the fatty acid pathway. Hydrolysis reactions occur mainly in the liver and plasma by a variety of non-specific hydrolases and esterases. Both deaminases and amidases, also localized in the liver and serum, carry out a large part of the catabolic process. Reduction reactions occur mainly intracellularly in the endoplasmic reticulum.
Phase II enzymes detoxify toxic substances by catalyzing their conjugation with water-soluble substances, thus increasing toxins' solubility in water and increasing their rate of excretion. Additionally, conjugation reduces the toxins' biological reactivity. Examples of phase II enzymes include glutathione S-transferases and UDP-glucuronosyl transferases, which catalyze conjugation to glutathione and glucuronic acid, respectively. Transferases perform conjugation reactions mainly in the kidneys and liver.
The liver is the primary site of elimination of most drugs, including psychoactive drugs, and contains a plurality of both phase I and phase II enzymes that oxidize or conjugate drugs, respectively.
Physicians currently prescribe drugs and their dosages based on a population average and fail to take genetic variability into account. The variability between individuals in drug metabolism is usually due to both genetic and environmental factors, in particular, how the drug-metabolizing enzymes are controlled. With certain enzymes, the genetic component predominates and variability is associated with variants of the normal, wild-type enzyme.
Most drug-metabolizing enzymes exhibit clinically relevant genetic polymorphisms. Essentially all of the major human enzymes responsible for modification of functional groups or conjugation with endogenous substituents exhibit common polymorphisms at the genomic level. For example, polymorphisms expressing a non-functioning variant enzyme results in a sub-group of patients in the population who are more prone to the concentration-dependent effects of a drug. This sub-group of patients may show toxic side effects to a dose of drug that is otherwise without side effects in the general population. Recent development in genotyping allows identification of affected individuals. As a result, their atypical metabolism and likely response to a drug metabolized by the affected enzyme can be understood and predicted, thus permitting the physician to adjust the dose of drug they receive to achieve improved therapy.
A similar approach is also becoming important in identifying risk factors associated with the development of various cancers. This is because the enzymes involved in drug metabolism are also responsible for the activation and detoxification of chemical carcinogens. Specifically, the development of neoplasia is regulated by a balance between phase I enzymes, which activate carcinogens, and phase II enzymes, which detoxify them. Accordingly, an individual's susceptibility to cancer often involves the balance between these two processes, which is, in part, genetically determined and can be screened by suitable genotyping tests. Higher induction of phase I enzymes compared to phase II enzymes results in the generation of large amounts of electrophiles and reactive oxygen species and may cause DNA and membrane damage and other adverse effects leading to neoplasia. Conversely, higher levels of phase II enzyme expression can protect cells from various chemical compounds.
Abnormal activity of drug-metabolizing enzymes has been implicated in a range of human diseases, including cancer, Parkinson's disease, myetonic dystrophy, and developmental defects.
Cytochrome p450
An example of a phase I drug-metabolizing enzyme is the cytochrome p450 (“CYP”) superfamily, the members of which comprise the major drug-metabolizing enzymes expressed in the liver. The CYP superfamily comprises heme proteins which catalyze the oxidation and dehydrogenation of a number of endogenous and exogenous lipophilic compounds. The CYP superfamily has immense diversity in its functions, with hundreds of isoforms in many species catalyzing many types of chemical reactions. The CYP superfamily comprises at least 30 related enzymes, which are divided into different families according to their amino acid homology. Examples of CYP families include CYP families 1, 2, 3 and 4, which comprise endoplasmic reticulum proteins responsible for the metabolism of drugs and other xenobiotics. Approximately 10-15 individual gene products within these four families metabolize thousands o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isolated human drug-metabolizing proteins, nucleic acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isolated human drug-metabolizing proteins, nucleic acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolated human drug-metabolizing proteins, nucleic acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2886015

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.