Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2001-04-20
2003-04-22
Sellers, Robert E. L. (Department: 1712)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C428S458000, C428S480000
Reexamination Certificate
active
06552134
ABSTRACT:
The present invention relates to epoxy functional polyester resins, to a process for their preparation and to outdoor durable powder coating compositions comprising them which have improved storage stability and overall coating properties.
Epoxy functional polyester resins and outdoor durable coatings comprising them, are known from e.g. European patent applications Nos. 0634434A2, 0720997A2 and International applications Nos. WO 98/23661 and WO 98/24828.
European patent application No. 0634434A2 discloses a process for the preparation of linear tertiary aliphatic carboxyl functional polyester resins, by reacting:
(a) at least one compound A′ comprising one monofunctional primary- or secondary hydroxyl group and/or at least one compound A″ comprising one primary- or secondary hydroxyl group and one tertiary aliphatic carboxyl group;
(b) at least one aromatic or cycloaliphatic dicarboxylic acid compound B comprising two aromatic- or secondary aliphatic carboxyl groups or the anhydride thereof;
(c) at least one diol compound C comprising two aliphatic hydroxyl groups, which may independently be a primary or a secondary hydroxyl group; and
(d) at least one dihydroxymonocarboxylic acid compound D comprising a tertiary aliphatic carboxyl group and two aliphatic hydroxyl groups, which may each independently be primary or secondary hydroxyl,
the molar ratio of compounds A′:A″:B:C:D being
M:N:X+Y+1:X:Y
wherein M+N=2, X ranges from 2 to 8 and Y ranges from 2-N to 8, at a temperature of from 100 to 240° C., until essentially all the non-tertiary carboxyl groups as initially present in the reaction mixture have been reacted. In this application, polyglycidylester resins were obtained by reacting such linear tertiary aliphatic carboxyl functional polyesters with an excess epihalohydrin in the presence of a suitable base and optional catalyst. Preferably, the polyesters were reacted with epichlorohydrin. Both the specified linear polyesters and the corresponding polyglycidylesters derived therefrom were used with a cross-linking agent for powder coating compositions.
In European patent application No. 0720997A2, linear tertiary carboxyl functional polyesters and epoxy functional polyester resins are disclosed where these polyester resins were produced by reacting:
a) at least one aromatic and/or cycloaliphatic carboxylic acid compound A comprising two aromatic- and/or secondary aliphatic carboxyl groups or the anhydride thereof,
b) at least one hydroxyl compound B comprising two aliphatic hydroxyl groups, which groups each independently may be primary or secondary hydroxyl groups,
c) at least one hydroxyl substituted carboxylic acid compound C comprising at least one tertiary aliphatic carboxyl group and two aliphatic hydroxyl groups, which groups each independently may be primary or secondary hydroxyl groups, and
d) optionally one carboxylic acid compound D comprising one carboxyl group,
the molar ratio of compounds A:B:C:D being
(X+Y−1):X:Y:Z,
wherein X ranges from 2 to 8, Y ranges from 2 to 8, and Z ranges from 0 to 2.
These polyester resins could be used together with a suitable curing agent for the production of powder coatings, or could be converted into the corresponding glycidylesters, which in combination with a suitable curing agent could be used for the production of powder coatings.
WO 98/24828 describes linear, tertiary carboxyl functional polyester resins obtainable by reaction of (a) at least one 1,4-dicarboxylcyclohexane (A) optionally mixed with a minor weight fraction of an alkane dicarboxylic acid, containing in the range of from 8 to 16 carbon atoms (A′), (b) at least one dihydroxymonocarboxylic acid compound (B), comprising a tertiary aliphatic carboxyl group and two aliphatic hydroxyl groups, (c) optionally one diol compound (C) comprising two aliphatic hydroxyl groups, which may independently be a primary or a secondary hydroxyl group, and optionally (d) a compound (D′) comprising one monofunctional primary or secondary hydroxyl group and/or a compound (D″) comprising one primary or secondary hydroxyl group and one tertiary aliphatic carboxyl group, the molar ratio of the compounds (A+A′):B:C:D′:D″ being X+Y+1:Y:X:M:N wherein M+N is the range of from 0 to 2, wherein X ranges from 2 to 8, and Y ranges from [2-(M+N)] to 8, at a temperature of from 100 to 225° C., until essentially all the non-tertiary carboxyl groups as initially present in the reaction mixture have been reacted; polyglycidylesters derived from said polyester resins; and coating compositions comprising at least one polyester resin and/or at least one polyglycidylester resin.
WO 98/23661 describes linear, tertiary carboxyl functional polyester resins obtainable by reaction of a) at least one compound A
1
, comprising the reaction product of (i) a glycidylester of a mixture of synthetic highly branched saturated monocarboxylic acids isomers of formula (R
1
) (R
2
) (R
3
)C—COOH (I), wherein R
1
, R
2
and R
3
are alkyl groups of from 1 to 15 carbon atoms, of which at least one is methyl, each acid containing from 5 to 19 and preferably from 5 to 13 carbon atoms and preferably CARDURA glycidylesters, and (ii) a mixture of said synthetic highly branched saturated monocarboxylic acids, in a molar ratio of 1:1; said component A
1
being optionally mixed with hydroxy pivalic acid (A
2
) and/or hydrogenated diphenylolpropane (A
3
); b) at least one aromatic or cycloaliphatic dicarboxylic acid compound B, comprising two aromatic- or secondary aliphatic carboxyl groups or the anhydride thereof; optionally c) at least one dihydroxymonocarboxylic acid compound C comprising a tertiary aliphatic carboxyl group and two aliphatic hydroxyl groups, which may each independently be primary or secondary hydroxyl; and d) optionally at least one diol compound D comprising two aliphatic hydroxyl groups which may each independently be a primary or a secondary hydroxyl group; the molar ratio of compounds A
1
:A
2
+A
3
:B:C:D being A
1
:(2-A
1
):X+Y+1:X:Y, wherein A
1
ranges from 0.1 to 2, wherein Y ranges from 0 to 6 and X ranges from 2 to 8, at a temperature of from 100 to 225° C., until essentially all the non-tertiary carboxyl groups as initially present in the reaction mixture have been reacted; polyglycidylesters derived from said polyester resins and coating compositions comprising at least one polyester resin and/or at least one polyglycidyl resin.
Although the linear tertiary aliphatic carboxyl functional polyester resins and the polyglycidylesters thereof enabled a certain progress towards the requirements of excellent outdoor durability (UV stability) and resistance against hydrolysis in the cured state, for their use in modern economically applied powder coatings, there is still a need for further improvement of this combination of properties.
On the other hand novel powder coating binders for the exterior durable powder coating market derived from carboxylated polyester resins, cured with epoxy functional acrylate polymers, have been proposed during the Waterborne, Higher Solids and Powder Coatings Symposium, Feb. 5-7, 1997, New Orleans La., USA, T Agawa and E D Dumain, p. 342-353, “New Two-component Powder Coating Binders: Polyester acrylate hybrid as TGIC Cure Alternative.
However, as indicated on page 353, further improvements have to be made to provide smoother films, lower cure temperatures and UV durability to rival that of automotive topcoating or outdoor building panel topcoating.
The epoxy functional polyester resins obtainable according to the hereinbefore discussed documents, although showing attractive combinations coating properties, such as outdoor durability, flexibility, hardness, chemical resistance comprise minor but significant amounts (≦25 wt %) of side products, which bear terminal hydroxy and/or hydrolyzable halogen (chlorine) and which have appeared to be formed during the incomplete glycidation of the starting carboxyl functional polyester resins
Kooijmans Petrus Gerardus
Van Gaalen Ronald Petrus Clemens
Vos Eric Johannes
Resolution Performance Products LLC
Sellers Robert E. L.
LandOfFree
Isocyanate-modified epoxy-functional polyester does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Isocyanate-modified epoxy-functional polyester, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isocyanate-modified epoxy-functional polyester will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3106015