Isocyanate formulations containing activated chain extenders

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S182220, C560S026000, C560S132000

Reexamination Certificate

active

06320012

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a process for controlling the reactivity of isocyanate formulations by selection of a chain extender having the desired effect upon isocyanate reactivity and to a process for producing relatively stable isocyanate formulations containing activated chain extenders.
The use of isocyanate formulations to produce urethanes for a wide variety of applications is known. One of the additives that is frequently included in such isocyanate formulations is a chain extender.
The most commonly used chain extenders are diols and primary amines. However, processing difficulties are encountered with each of these types of chain extenders. Diol chain extenders react so slowly with an isocyanate that, in the absence of a catalyst, the time required to complete the reaction is commercially impractical. Primary amines, on the other hand, react much too quickly with isocyanates.
It would therefore be desirable to develop a chain extender having an isocyanate reactivity greater than that of diols but less than that of primary amines.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a relatively stable isocyanate formulation.
It is another object of the present invention to provide a method for adjusting the reactivity of an isocyanate formulation by selecting an appropriate activated chain extender.
These and other objects of the invention which will be apparent to those skilled in the art are accomplished by including an activated chain extender corresponding to Formula (I) specified herein in an isocyanate formulation.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to isocyanate formulations in which an activated chain extender corresponding to the formula
HO—R
1
—NR
2
—X—NR
3
—R
4
—OH  (I)
in which
R
1
represents an alkyl group having from 2 to 8 carbon atoms, preferably from 2 to 6 carbon atoms, most preferably from 2 to 4 carbon atoms,
R
2
represents an alkyl group having from 1 to 8 carbon atoms, preferably from 1 to 6 carbon atoms, most preferably from 1 to 4 carbon atoms, an aryl group having from 6 to 14 carbon atoms, preferably from 6 to 10 carbon atoms, most preferably from 6 to 8 carbon atoms, or a hydroxyalkyl group having from 2 to 8 carbon atoms, preferably from 2 to 6 carbon atoms, most preferably from 2 to 4 carbon atoms and from 1 to 2 hydroxyl groups, preferably 1 hydroxyl group,
R
3
represents an alkyl group having from 1 to 8 carbon atoms, preferably from 1 to 6 carbon atoms, most preferably from 1 to 4 carbon atoms, an aryl group having from 6 to 14 carbon atoms, preferably from 6 to 10 carbon atoms, most preferably from 6 to 8 carbon atoms, or a hydroxyalkyl group having from 2 to 8 carbon atoms, preferably from 2 to 6 carbon atoms, most preferably from 2 to 4 carbon atoms and from 1 to 2 hydroxyl groups, preferably 1 hydroxyl group,
R
4
represents an alkyl group having from 2 to 8 carbon atoms, and
X represents an alkyl group having from 1 to 16 carbon atoms, preferably from 2 to 14 carbon atoms, most preferably from 3 to 12 carbon atoms, an aryl group having from 6 to 14 carbon atoms, preferably from 6 to 10 carbon atoms, most preferably from 6 to 8 carbon atoms, or a polyether represented by the formula
—(R
5
OR
6
)
n

in which
R
5
represents an alkyl group having from 1 to 6 carbon atoms, preferably from 1 to 5 carbon atoms, most preferably from 1 to 4 carbon atoms or an aryl group having from 6 to 10 carbon atoms, preferably from 6 to 9 carbon atoms, most preferably from 6 to 8 carbon atoms, and
R
6
represents an alkyl group having from 1 to 6 carbon atoms, preferably from 1 to 5 carbon atoms, most preferably from 1 to 4 carbon atoms or an aryl group having from 6 to 10 carbon atoms, preferably from 6 to 9 carbon atoms, most preferably from 6 to 8 carbon atoms, and
n=1-6, preferably 1-5, most preferably 1-3, is incorporated.
Specific compounds represented by Formula (I) which are particularly useful in the practice of the present invention include: 2,2′-[1,4-cyclohexyl bis-[methylene (methylimino)]] bis-ethanol; 2,2′-[1,4-cyclohexyl bis-[methylene (methylimino)]] bis-ethanol; 2,2′-[hexamethylene bis-(methylimino)] diethanol; 2,2′-[hexamethylene bis-(ethylimino)] diethanol; and 3,1 2-diethyl-6,9-dioxa-3, 1 2-diazatetradecane-1, 14-diol.
The chain extenders represented by Formula (I) may be prepared by reacting an excess of aminoalcohol with an alcohol or a polyether having a good leaving group such as a mesylate or halide leaving group. Examples of these chain extenders and a process for producing these chain extenders are disclosed in U.S. Pat. No. 5,326,829 which is incorporated herein by reference.
The aminoalcohol used to produce the chain extender corresponding to Formula (I) may be any of the known aminoalcohols. Preferred aminoalcohols are the N-alkylaminoalcohols, N-arylamino-alcohols and dialcohol amines. Examples of suitable aminoalcohols include: 2-(methylamino)ethanol, 2-(ethylamino)ethanol, diethanol amine, diisopropanolamine, N-phenylethanolamine, 2-(tertbutylamino) ethanol, N-butyl-ethanolamine and N-propyl-ethanolamine. Particularly preferred aminoalcohols are 2-(methylamino)ethanol and 2-(ethylamino)ethanol.
The alcohol used to produce the chain extender of the present invention may be any of the known alcohols which contains a good leaving group. As used herein, a good leaving group is a group which can be displaced at the carbon atom by a nucleophile such as nitrogen, oxygen or sulfur. Examples of good leaving groups include: halide groups, alkyl sulfonate groups, aryl sulfonate groups, and nitrophenoxy groups. Halide groups, particularly chloride and bromide, alkyl sulfonate groups, and aryl sulfonate groups are preferred.
In preparing the alcohol with good leaving groups used to produce the chain extenders of the present invention, the alcohol and reactant supplying the leaving group are generally combined at a low temperature (e.g., 0° C.) and maintained at a temperature below 45°, preferably at a temperature below 35° C.
The aminoalcohol and the alcohol containing good leaving groups are generally reacted in quantities such that at least 1 equivalent of aminoalcohol is present for each equivalent of alcohol containing good leaving groups, preferably from about 1 to about 3 equivalents of aminoalcohol are present for each equivalent of alcohol containing good leaving groups. This reaction is generally conducted at temperatures of from 50 to 200° C., most preferably at a temperature of from 80 to 150° C.
The isocyanate formulation into which the activated chain extender corresponding to Formula (I) is incorporated may be any of the known diisocyanates or polyisocyanates. The isocyanate formulation may be made up of a single isocyanate, a combination of isocyanates, an isocyanate-terminated prepolymer, a modified isocyanate (e.g., allophanates, biurets, carbodiimides and trimers) or an isocyanate adduct having terminal isocyanate groups. The diisocyanates and polyisocyanates are particularly useful. Examples of isocyanates useful in the practice of the present invention include: any of the isomers of toluene diisocyanate and mixtures thereof (“TDI”); any of the isomers of diphenylmethane diisocyanate and mixtures thereof (“MDI”); polyphenylene polymethylene polyisocyanate (“polymeric MDI” or “PMDI”); hexamethylene diisocyanate (“HDI”); isophorone diisocyanate (“IPDI”); and dicyclohexylmethane 4,4′-diisocyanate. TDI, HDI and MDI are particularly preferred.
In the practice of the present invention, the activated chain extender is included in the isocyanate formulation in an amount of from about 0.1 to about 1.5 equivalents for each equivalent of isocyanate, preferably from about 0.5 to about 1.2, most preferably from about 0.8 to about 1.1.
Generally, the activated chain extender will be added to the isocyanate and the resultant mixture will be agitated to ensure dispersion of the chain extender throughout the formulation. The te

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isocyanate formulations containing activated chain extenders does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isocyanate formulations containing activated chain extenders, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isocyanate formulations containing activated chain extenders will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2593012

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.