Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
1999-09-28
2002-04-30
Getzon, Scott M. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C600S509000
Reexamination Certificate
active
06381493
ABSTRACT:
CROSS REFERENCE TO RELATED PATENT APPLICATION
Reference is hereby made to commonly assigned co-pending U.S. patent applications Ser. No. 09/280,286 filed on even date herewith for IMPROVED METHOD FOR ISCHEMIA DETECTION AND APPARATUS FOR USING SAME in the names of Robert W. Stadler et al., Ser. No. 09/968,454 filed on even date herewith for AXIS SHIFT ANALYSIS OF ELECTROCARDIOGRAM SIGNAL PARAMETERS ESPECIALLY APPLICABLE FOR MULTIVECTOR ANALYSIS BY IMPLANTABLE MEDICAL DEVICES, AND USE OF A SAME in the names Robert W. Stadler et al. Ser. No. 09/280,592 filed on even date herewith for DETERMINATION OF ORIENTATION OF ELECTROCARDIOGRAM SIGNAL IN IMPLANTABLE MEDICAL DEVICES in the names Robert W. Stadler et al.
FIELD OF THE INVENTION
This invention relates to a method and apparatus embodied in an implantable medical device (IMD) or an external medical device (EMD) for monitoring myocardial ischemia of a patient's heart and optionally applying a therapy to a patient experiencing ischemia.
Further, this invention relates to ways to detect ischemia through cardiac pacing, and during mixed paced and intrinsic cardiac events, and also during blocked bundle branch intrinsic events. (Blocked bundle branch intrinsic events produce electrocardiogram forms similar to paced events. Accordingly, when in the detailed description reference is made to non-standard or paced electrograms, unless otherwise noted, it should be understood that reference is also being made to bundle branch blocked electrograms).
BACKGROUND
Myocardial ischemia is the leading cause of morbidity and mortality in developed countries. Myocardial ischemia involves oxygen starvation of the myocardium, particularly in the bulky left ventricular wall, that can lead to myocardial infarction and/or the onset of malignant arrhythmias if the oxygen starvation is not alleviated. Although myocardial ischemia is associated with the symptom of angina pectoris, the majority of episodes of myocardial ischemia are asymptomatic or “silent.”
Accurate and rapid detection of myocardial ischemia is the first essential step toward reducing morbidity and mortality from this often silent but deadly condition. Without the knowledge of the condition, it cannot be treated. A wide range of therapies are known for the treatment of myocardial ischemia once it is detected, including surgical revascularization, neural stimulation and a variety of biologically active agents or compounds which can remove blood clots, reduce cardiac workload or improve cardiac circulation.
The electrocardiogram (ECG) or electrogram (EGM) of the cardiac cycle detected across sense electrode pairs located on the patient's skin or in the patient's body, respectively, is a repetitive waveform characterized by a periodic PQRST electrical activation sequence of the upper and lower heart chambers. The PQRST sequence is associated with the sequential depolarization and contraction of the atria followed by the depolarization and contraction of the ventricles, and successive PQRST complexes are separated by a baseline or isoelectric region. The PQRST electrical activation sequence commences with the P-wave indicative of the depolarization and contraction of the atria and is followed by the QRS complex indicative of the depolarization and contraction of the ventricles. The T-wave at the termination of the ST segment time delay is associated with re-polarization of the ventricles. The PQRST electrical activation sequence with intact A-V activation detected across a sense electrode pair is fairly predictable in shape. The P-wave, R-wave and T-wave events occurring in sequence in the range of normal heart rates are usually readily recognized by visual examination of the external ECG or an EGM recorded by implanted electrodes that are correctly oriented with the depolarization waves. The P-wave and R-wave are readily sensed by sense amplifiers of a monitor or therapy delivery device coupled with appropriately placed sense electrode pairs.
The ST segment of the ECG or EGM is typically close in amplitude to the baseline or isoelectric amplitude of the signal sensed between PQRST sequences, depending on the sense electrode pair location. During episodes of myocardial ischemia, the ST segment amplitude is elevated or depressed (depending on positioning of the ECG or EGM sense electrodes in relation to the heart) from baseline. These ST segment deviations can be readily recognized by visual examination.
The physiological basis of ST segment deviation changes in the presence of cardiac ischemia may be explained by ischemic changes in the action potential of cardiac myocytes. When myocytes become ischemic, the resting potential increases (toward zero), the depolarization slope of the action potential decreases, the plateau decreases in voltage, and the duration of the action potential decreases. These changes result in voltage gradients and an “injury current” between normal and ischemic myocardium during the resting and plateau phases of the action potential. Because the voltage gradient between the normal and ischemic myocardium is positive during diastole and negative during systole, the isoelectric or baseline signal level and the ST segment signal level of the ECG are displaced in opposite directions during ischemia. The change in the isoelectric or baseline level is not easily detected because the pair of sense electrodes implanted in the patient's body are AC coupled through filters to the inputs of differential sense amplifiers. However, the disparity between the isoelectric or baseline level and the ST segment may be detected if the isoelectric or baseline point and the ST segment point can be identified.
It has long been a goal in the development of external cardiac monitors and IMDs to be able to automatically detect ST segment deviations from baseline and to accurately determine when the heart is ischemic therefrom so that the patient's cardiac condition can be assessed and treated both in the clinical setting and while the patient is outside a clinical setting. A wide number of implantable therapy delivery devices and or monitors have been proposed for detecting ischemia and delivering a therapy and/or recording the detected ischemic events in an ambulatory patient. Fundamentally, the algorithms employed in these systems endeavor to automatically sample the amplitude of the ST segment in the PQRST complex in an EGM or ECG signal, compare its absolute amplitude against a threshold and declare an ischemic or normal condition based on the results of the comparison.
In regard to Implantable Medical Devices (IMDs), commonly assigned U.S. Pat. Nos. 5,199,428 and 5,330,507 and U.S. Pat. No. 5,203,326, are incorporated herein by reference, and describe the historical development of electrical stimulation of the carotid and vagus nerves and other nerves to relieve cardiac arrhythmias and angina pectoris associated with myocardial ischemia. Perhaps more important to the background of this invention, they also describe relatively simplistic methods for detecting cardiac ischemia. The '326 patent also proposes providing backup anti-tachyarrhythmia pacing and cardioversion/defibrillation shock therapies. U.S. Pat. Nos. 5,531,768, 5,497,780, 5,135,004 and 5,313,953, all incorporated herein by this reference, monitor or detect myocardial ischemia and some record data related to ischemic episodes for telemetry out at a later time, to provide therapy or even to set off an alarm.
In these ischemia detection IMDs, the ischemia detection depends entirely or at least in part on the location of a fiducial point in the PQRST sequence, sampling the EGM signal level at a point within the ST segment in the PQRST sequence, and detection an elevated or depressed ST level exceeding a threshold level. Automatic detection techniques are set forth in the above-incorporated '428 and '50″ patents that depend on sensing the R-wave, setting an ST segment time window timed from the detected R-wave, sampling the amplitude and/or integrating the amplitude to develop a current
Nelson Shannon
Stadler Robert
Duthler Reed
Getzon Scott M.
Medtronic Inc.
LandOfFree
Ischemia detection during non-standard cardiac excitation... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ischemia detection during non-standard cardiac excitation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ischemia detection during non-standard cardiac excitation... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2926431