Irrigation hose splice

Stock material or miscellaneous articles – Hollow or container type article – Polymer or resin containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S036900, C285S005000, C285S015000

Reexamination Certificate

active

06440510

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to agricultural irrigation, and more specifically, to an irrigation hose splice and method of making such a splice, including irrigation hose splices for irrigation hoses known as “drip tape” which are used to irrigate crops by distributing water substantially uniformly at discreet locations spaced along the length of the tape.
Drip tapes are more easily rolled, transported, and stored than are hoses which remain always round in cross section. Moreover, drip tape has become increasingly popular in row-crop farming because water is distributed to the soil immediately adjacent to the growing plants, and the entire field need not be irrigated. Strawberry growers, in particular, have almost uniformly adopted the use of drip tape.
A major problem hindering the further use of drip tape for agricultural irrigation of major crops is the cost of replacing drip tape or repairing existing drip tape. For example, most major crops have a value per acre that does not justify the continual replacement cost of new drip tape or the labor costs associated with the retrieval and reinstallation of used drip tape using conventional methods. One exception is strawberry growers who almost unanimously discard the old drip tape and replace it with new drip tape with each annual planting. Strawberries have a high cash value per acre, and therefore the cost of replacing drip tape is economically justifiable.
In addition to the cost of replacing drip tape with each crop, discarded drip tape is environmentally unfriendly. For example, one acre of strawberries requires approximately 12,000 to 16,000 linear feet of drip tape depending on the row spacing. Because drip tape is replaced with each crop, which is every year for strawberries, landfills are increasingly becoming strewn with used drip tape.
Over time the repeated installation and retrieval of used drip tape results in an increasing number of unjoined segments. Typically, there are many unjoined segments on the retrieved drip tape spool, even after only one use, because the drip tape segments are only as long as the particular row from which they are retrieved. Since the row lengths generally vary, the used drip tape segment upon reinstallation will most probably require a coupling because the used segment will likely be too long or too short for the new row length. This problem is compounded with each additional retrieval and reinstallation. Eventually, the high cost of the couplings and installation labor make the further use of used drip tape economically unviable.
Conventional repair methods for flexible hoses incorporate the use of injection molded plastic couplings to splice together the unjoined pieces of flexible hoses. Examples of such couplings are those sold by Agricultural Products Inc. under the designation TAPELOC FITTINGS™. However, in addition to the cost of these couplings, these couplings must be removed each time the hose is retrieved because the coupling is rigid and therefore can damage the hose as the hose coils on the take-up spool. Removing the plastic couplings and reinstalling them each time the hose is re-used is time consuming and expensive, and thus limits the viability of re-using irrigation hoses as the required number of plastic couplings increases with each crop. Another disadvantage is that the coupler has a diameter smaller than the adjoining hoses and therefore can have a flow reducing effect.
Alternatively, another method of repairing hoses is described in U.S. Pat. No. 3,635,504 issued on Jan. 18, 1972. Two hose sections are spliced together by cutting their ends diagonally, telescoping them over a fabric-reinforced uncured rubber sleeve, placing uncured rubber against the sleeve to fill a gap between the hose sections, bridging between the outer surfaces of the hose sections with a strip of uncured rubber, and curing the uncured rubber elements while applying compressive forces. This method, like the method involving rigid couplers, is time consuming and therefore similarly impractical as the number of segments requiring repair increases.
In view of the above, it should be appreciated that there is still a need for an irrigation hose splice and method of making such a splice that can be accomplished in a consistent manner with minimal amount of time and equipment, and results in an irrigation hose that can be installed and retrieved in the same way as new or undamaged hose. The present invention satisfies these and other needs and provides further related advantages.
SUMMARY OF THE INVENTION
The present invention relates to an irrigation hose splice and method of making the same, including a hose splice for drip tape, requiring minimal time and equipment. Moreover, the present invention allows the repaired irrigation hose to be retrieved and re-installed in the same manner as new or undamaged hose. Finally, the present invention is environmentally friendly in that it reduces the amount of irrigation hose discarded with each crop.
The method of making an irrigation hose splice includes inserting a first hose segment into a second hose segment so that the first hose segment is completely circumscribed by the second hose segment. This creates an overlapping area preferably less than one inch in length. The first and second hose segments are then fused together by externally applying heat and pressure at the overlapping area to create an irrigation hose splice. The irrigation hose splice is then cooled.
An important feature of the present invention is the insertion of a heat shield into the first hose segment, i.e., the hose segment that is completely circumscribed by the second hose segment. During the fusing process, the heat shield prevents the inner circumferential surface of the first segment from sealing onto itself which would restrict fluid flow within the irrigation hose. This results in a repaired irrigation hose that can withstand greater longitudinal forces, especially prevalent during installation and retrieval. Further, the heat shield itself may contain a layer of hose material in addition to the heat resistant material. This may be especially desirable when repairing multi-chambered flexible hosing because the additional hose material in the heat shield prevents the circumferential portions of the hose segments that are not multi-chambered from being damaged by the application of heat and pressure required to fuse together the thicker adjacent portions of the hose (i.e., those portions along the circumference which are multi-chambered). The use of such a heat shield results in an irrigation hose splice that can withstand greater longitudinal forces, especially prevalent during installation and retrieval of the irrigation hose.
Another important feature of the present invention is that the heat shield may be water soluable such that the heat shield remaining in the irrigation hose can be removed by dissolving it with water during irrigation. Alternatively, the heat shield can be forced out by flushing the hose prior to use.
Another important feature of repairing irrigation hose in this manner is that the irrigation hose can be repaired in the field during retrieval and recoiling of the irrigation hose. This allows for installation of the repaired irrigation hose in the same manner as new hose. Other features and advantages of the present invention will become apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.


REFERENCES:
patent: 3635504 (1972-01-01), Borden et al.
patent: 3666586 (1972-05-01), Lacey
patent: 3998682 (1976-12-01), Harmsen
patent: 4032176 (1977-06-01), Tabary
patent: 4092193 (1978-05-01), Brooks
patent: 4215516 (1980-08-01), Huschle et al.
patent: 4610742 (1986-09-01), Rop et al.
patent: 4630846 (1986-12-01), Nishino et al.
patent: 4636272 (1987-01-01), Riggs
patent: 4736775 (1988-04-01), Oxley
patent: 4801349 (1989-01-01), Dommer et al.
patent: 4906313 (1990-03-01), Hill
patent: 5141580

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Irrigation hose splice does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Irrigation hose splice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Irrigation hose splice will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2889597

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.