Irrigation controller

Data processing: generic control systems or specific application – Specific application – apparatus or process – Mechanical control system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S011000, C700S014000, C700S016000, C700S019000, C700S020000, C700S086000, C137S078200, C137S078300, C137S624110, C137S624120, C137S624180, C239S063000, C239S064000, C239S069000, C239S070000, C239S551000

Reexamination Certificate

active

06453215

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to irrigation equipment. More particularly, the invention disclosed herein relates to a programmable irrigation controller for multiple watering zones.
BACKGROUND OF THE INVENTION
Vegetation typically grows in soil that has been watered by rain. However, normal and healthy growth of vegetation can be retarded and even prevented when natural rainfall fails to meet the requirements of that vegetation. Advantageously, artificial irrigation can compensate for the deficiencies of nature by supplying sufficient amounts of water directly to vegetation at predetermined intervals for predetermined lengths of time.
Early techniques for supplementing natural rainfall relative to vegetation located remote distances from a water source often comprised such rudimentary methods as a manual pouring of water directly onto vegetation by hand and bucket. Eventually, aqueduct systems simplified the task. A basic aqueduct systems typically comprises long furrows or pipes designed to transport water from a remote source, usually employing gravity, to an area immediately adjacent the vegetation sought to be watered. Eventually, diligent invention led to additional advances in irrigation. Animal power and mechanical lifting provided irrigation systems that were more efficient and less taxing on those who employed them.
Advances in generalized technology eventually led to still further improvements in irrigation. Steam power, the internal combustion engine, and electricity allowed irrigation systems to become fully mechanized. Previously state-of-the-art irrigation controllers gave way to mechanical devices with internal, often programmable, timers. These systems provided a means for automating the control of water flow from a pressurized water source through piping assemblies and the like to plural watering stations or zones.
Automatic electromechanical controllers for such systems typically incorporated conventional motor-driven electric clocks for allowing a user to program individual start times for particular irrigation cycles and watering stations. Calendar programs could provide the ability to select particular days for watering over a span of 14 days and more. With these electromechanical controllers, calendar programs would be operable by means of a disc that is rotated each 24 hours to a next-day position by a motor-driven clock. Unfortunately, such systems quickly become undesirably complex with increased numbers of watering zones, such as is required with golf courses, cemeteries, parks, and the like.
Again, innovation provided an incremental improvement with the development of solid state irrigation controllers thereby replacing the electric motors, mechanical switches, actuating pins, cams, levers, gears, and other mechanical devices with solid state electronic circuitry. With this, the systems allow programming of multiple start times and day programs for individual watering stations or zones, repeat cycles, and watering time selections in minutes or even seconds—all with increased accuracy coupled with a concomitant elimination of the complex interrelation of mechanical parts.
Generally, prior art solid state irrigation controllers incorporate a programmable microprocessor with a user interface that enables a programming of several watering stations or zones based on a plurality of timing variables such as daily, weekly, odd days, even days, start times, watering lengths, and still further variables. Each watering zone typically includes one or more sprinklers and a solenoid valve that is normally regulated by the microprocessor. The solenoid valves control the flow of water from a pressurized water source to a given watering zone. Certain systems visually communicate the current status of the system's programmable variables by use of such means as liquid crystal displays (hereinafter “LCD”). Some systems allow a user to override the preprogrammed automatic watering operations by manual intervention. This allows the system to account for unusual circumstances such as excessive rain or drought.
It will be immediately apparent that this lengthy evolution of irrigation systems has resulted in state-of-the-art systems that are exponentially more efficient, convenient, and effective than their predecessors. Unfortunately, however, as with nearly all things, even advanced systems remain imperfect.
For example, although known prior art irrigation controllers have enabled remote communication between a remote unit and a controller microprocessor, this communication has been decidedly one sided. Irrigation controllers have allowed for the remote operation of water valves and the like by a sending of information from the remote unit to the microprocessor. However, they have not allowed an opposite stream of communication—communication from the microprocessor to the remote unit. Accordingly, a remote user can not determine whether one or more watering zones is faulty (e.g., is in an open-circuit or closed circuit condition). Consequently, remote troubleshooting often becomes unduly burdensome.
Another shortcoming exhibited by prior art irrigation controllers is that they give a user insufficient flexibility. Although a user can select from multiple watering programs in prior art control systems, such systems do not allow a ready switching from one mode that employs one entire set of programs that the user has entered to a second or third mode that employs other sets of programs that the user has entered. Consequently, causing the irrigation controller to accommodate changes in seasons or the demands of germinating seeds are laborious tasks each and every time they must be accomplished.
Another shortcoming from which prior art irrigation controllers suffer relates to their current sensing circuitry, which is typically capable of sensing faulty valves within the irrigation system. Although such current sensing circuitry is useful for protecting an irrigation controller from harm from a faulty (i.e., shorted) valve, it is not capable of specifying how many valves are open in any given watering zone, which would allow the irrigation controller to adjust the maximum allowable current in the system. Furthermore, such systems are not able to determine when no valve is operational whereby the system may pump water with no valve open thereby causing damage to the pump and, possibly, other portions of the irrigation system.
A further deficiency in prior art irrigation controllers is that crucial information often is lost during extended periods when the overall system is without power, such as during winter months or extended periods of power failure. As a result, systems that lose their memory often will not recall whether they were on or off when they were last in use. When such a system again receives power, it may malfunction such as by activating water valves even while the system is down. Furthermore, such a system could lose all of the watering programs that had previously been entered such that a user would have to reenter each program sought to be employed.
Yet another drawback exhibited by irrigation controllers of the prior art is a common inability to provide a specialized mode that allows a user to activate multiple watering zones simultaneously. In day-to-day operation, this is a desirable restriction because having too many valves open during regular operation can cause malfunctions in the system such as from excessive loss in head. However, such an ability is highly desirable during such operations as winterizing procedures where a user seeks to blow the water from each of the zones to prevent damage from freezing water. As a result, with present-day irrigation controllers the user must activate each zone separately in an arduous and time-consuming procedure.
Finally, a most prevalent shortcoming exhibited by prior art irrigation controllers is that programming them is often a difficult and confusing task. For example, a user seeking to program a multiplicity of watering zones often is unable to determine which watering zo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Irrigation controller does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Irrigation controller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Irrigation controller will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2904781

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.