Fluid sprinkling – spraying – and diffusing – Conduit or nozzle attached irrigation-type decelerator
Reexamination Certificate
2002-02-12
2003-06-24
Evans, Robin O. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Conduit or nozzle attached irrigation-type decelerator
C239S001000, C239S271000, C239S533100, C239S569000, C239S547000, C239S570000
Reexamination Certificate
active
06581854
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention relates generally to irrigation apparatus having lateral lines, and more particularly, to inserts adapted to be contained within a fluid conduit for supporting directly a lateral tube extending from the conduit.
The present application is preferably used in a drip irrigation system. An irrigation system applies water to specific plant or root zone locations in controlled quantities. It is thereby possible to irrigate planted areas with substantially less water than is used by general broadcast sprinkler or flooding methods. Several apparatuses for use in irrigation systems are well known.
One type of drip emitter, called a clipon dripper, is shown in U.S. Pat. No. 4,036,435, issued on Jul. 19, 1977, to Pecaro. The clipon dripper is generally large in size. Another type of a clipon dripper is the button dripper, which is typically smaller in size and is widely used in today's market. Both types of drippers include a connector attached externally to a main fluid conduit and a micro tube attachment facility. This apparatus has several disadvantages. The main fluid conduit cannot be easily reeled after attachment of the external dripper and the attachment of the external dripper is labor intensive which substantially increases the cost of the dripline. The button dripper, due to its size, has typically smaller fluid flow passageways and therefore is more sensitive to clogging. All external drippers have the disadvantage that the main fluid conduit may collapse or give way when external pressure is applied to attach the external dripper connector thereto. In addition, the external dripper connector may become dislodged when internal pressure is applied to the main fluid conduit.
A second type of drip apparatus, called merely a connector, is shown in U.S. Pat. No. 5,692,858, issued on Dec. 2, 1997, to Vaughan. This apparatus comprises a micro tube attached to a connector, wherein the connector is attached directly to a main fluid conduit at an aperture therein. This apparatus also has several disadvantages. The connector may easily become dislodged from the main fluid conduit, i.e., “pop off” the fluid line, when fluid in the conduit is pressurized. Leakage may occur between the connector and the main fluid conduit if the conduit is moved or distorted, which may occur under pressurized fluid conditions.
A third type of drip apparatus comprises an external connector secured to the main fluid conduit by an external clip or band. The connector and the clip or band may be manufactured as a single unit. This apparatus has several disadvantages. The apparatus may be expensive to install due to the expense of purchasing the clips and the connectors, and due to the labor costs of attaching each of the connectors and clips to the main fluid conduit. Moreover, the clip or band does not always hold the connector in watertight engagement with the main fluid conduit so that leaks may occur.
There thus remains a need for an emitter apparatus that is easy to install, that is relatively inexpensive to purchase and manufacture, and that allows a main fluid conduit to be reeled and re-reeled after use. Moreover, there remains a need for an emitter apparatus that provides support to the main fluid conduit when connectors and/or micro tubes are secured thereto.
BRIEF SUMMARY OF THE INVENTION
These features are provided in the present invention by an irrigation apparatus comprising an insert, such as an in-line drip emitter, adapted to be secured within a main fluid conduit for supporting a lateral tube element, such as a micro tube or connector.
In general, the invention provides an irrigation apparatus comprising an insert that is adapted to be received within a fluid conduit and having an outer surface mountable in physical contact with an inner surface of the fluid conduit. The insert includes a support adapted for supporting a lateral, tube element extending through an aperture in the fluid conduit when the support is positioned adjacent to the aperture. The insert also includes a fluid passageway providing fluid communication between the interior of the fluid conduit and the aperture.
The insert in the preferred embodiment of the invention is an in-line drip emitter or dripper. It also may simply be a support element providing a relatively unrestricted water passageway between the interior of the fluid conduit and the aperture. The flow-limiting fluid passageway characteristic of drip emitters is not required for the invention. Further, the present invention can be applied to a variety of in-line drippers. For example, the internal micro tubing connector of the present invention can be implemented with a conventional non-compensated dripper or with a pressure compensated dripper. The dripper may have different features, such as a retention (non-leakage) valve, pressure regulating features or other such valve means. The physical configuration of the insert may also vary. For example, the insert may be cylindrical or flat in shape. It can be symmetrical, i.e., the output support may be positioned centrally along the insert, or the insert may be asymmetrical, with the outlet positioned closer to one end of the insert.
The invention also provides a method of assembling an irrigation apparatus. Generally, this method includes the steps of (1) providing an irrigation fluid conduit including an inner surface; (2) securing an insert to the inner surface of the fluid conduit; (3) forming an aperture in the fluid conduit adjacent to the insert; (4) extending an end of a tube element through the aperture; and (5) supporting the end of the tube element extending through the aperture relative to the insert.
The preferred embodiment of the invention is thus seen particularly to provide an improved method and apparatus for connecting a micro tube or connector to a drip irrigation line at the dripper location. The method and apparatus take advantage of the in-line dripper with all its advantages over the complicated, external button and strap/band drippers, and over the delicate prior art connector apparatus. Some embodiments of the present invention do not require additional connectors and adapters and reduces labor costs because once the fluid conduit is unreeled the only remaining task is to attach a micro tube to the output opening of the dripper. Moreover, the internal emitter provides structural support for the main fluid conduit when external pressure is applied to the conduit during attachment of a micro tube or a connector thereto.
In a preferred embodiment the internal emitter comprises a cylindrical dripper having a flow-restricting fluid passageway formed between the dripper and the inner surface of the fluid conduit. The fluid passageway or labyrinth communicates between the interior of the fluid conduit and a tube-element support in a connection region on the dripper. The support is aligned with an aperture in the fluid conduit and facilitates connection of a lateral tube element relative to the internal dripper. The lateral tube element may be any device associated with a micro tube, such as an end of the tube or a connector to which a micro tube may be attached. The support preferably comprises a projection for securing a micro tube thereto. The internal dripper typically is secured to the inner surface of the main fluid conduit and is contained entirely therein such that there are no projections outside the conduit. This is the preferred embodiment since, after detachment of the micro tubes, the main fluid line is free of external parts that could interfere with the reeling or other handling of the conduit. The internal dripper provides structural internal support to the fluid conduit when external pressure is applied to the line, such as when a micro tube or a connector is forced against the main fluid line to be connected thereto. The invention may also be practiced with embodiments that have a protrusion through the conduit aperture.
REFERENCES:
patent: 3799
Eckstein Eran
Eckstein Gershon
Anderson Edward B.
Drip Irrigation Systems, Ltd.
Evans Robin O.
LandOfFree
Irrigation apparatus having a lateral recessed projection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Irrigation apparatus having a lateral recessed projection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Irrigation apparatus having a lateral recessed projection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3134048