Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Eye prosthesis – Intraocular lens
Reexamination Certificate
2003-05-06
2004-06-29
Snow, Bruce (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Eye prosthesis
Intraocular lens
C623S006450, C623S006470
Reexamination Certificate
active
06755859
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to intraocular lenses (IOLs) and a method for making and using the same. More particularly, the present invention relates to anterior chamber iris fixated IOLs designed primarily for refractive correction in phakic eyes where the eye's natural lens remains intact.
BACKGROUND OF THE INVENTION
Visual acuity deficiencies such as myopia (nearsightedness), hyperopia (farsightedness), presbyopia (age-related farsightedness), aphakia (absence of the crystalline lens of the eye) and astigmatism (irregular conformation of the cornea of the eye) are typically corrected through the use of refractive lenses such as spectacles or contact lenses. Although these types of lenses are effective in correcting a wearer's eyesight, many wearers consider the lenses inconvenient. The lenses must be located, worn at certain times, removed periodically and may be lost or misplaced. The lenses may also be dangerous or cumbersome if the wearer participates in athletic activities or suffers an impact in an area near the eyes.
The use of surgically implanted anterior chamber IOLs as a permanent form of refractive correction has been gaining in popularity. IOL implants have been used for years in the anterior or posterior chamber of aphakic eyes as replacements for surgically removed natural crystalline lenses, which is common in the case of cataracts. Many different IOL designs have been developed over past years and proven successful for use in aphakic eyes. The successful IOL designs to date primarily include an optic portion with supports therefor, called haptics, connected to and surrounding at least a part of the optic portion. The haptic elements of an IOL are designed to support the optic portion of the IOL in the lens capsule, anterior chamber or posterior chamber of an eye once implanted.
Commercially successful IOLs have been made from a variety of biocompatible materials, ranging from more rigid materials such as polymethylmethacrylate (PMMA) to softer, more flexible materials capable of being folded or compressed such as silicones, certain acrylics, and hydrogels. Haptic portions of the IOLs have been formed separately from the optic portion and later connected thereto through processes such as heat, physical staking and/or chemical bonding. Haptics have also been formed as an integral part of the optic portion in what is commonly referred to as “single-piece” IOLs.
Softer, more flexible IOLs have gained in popularity in recent years due to their ability to be compressed, folded, rolled or otherwise deformed. Such softer IOLs may be deformed prior to insertion thereof through an incision in the cornea of an eye. Following insertion of the IOL in an eye, the IOL returns to its original pre-deformed shape due to the memory characteristics of the soft material. Softer, more flexible IOLs as just described may be implanted into an eye through an incision that is much smaller, i.e., 2.8 to 3.2 mm, than that necessary for more rigid IOLs, i.e., 4.8 to 6.0 mm. A larger incision is necessary for more rigid IOLs because the lens must be inserted through an incision in the cornea slightly larger than that of the diameter of the inflexible IOL optic portion. Accordingly, more rigid IOLs have become less popular in the market since larger incisions have been found to be associated with an increased incidence of postoperative complications, such as induced astigmatism.
After IOL implantation, both softer and more rigid IOLs positioned within the angle of the anterior chamber of the eye are subject to compressive forces exerted on the outer edges thereof, which typically occur when an individual squints or rubs the eye. Such compressive forces on angle positioned IOLs in either aphakic or phakic eyes may result in tissue damage, decentration of the IOL and/or distortion of the visual image. Compressive forces exerted on an angle positioned IOL may also tend to cause movement of the IOL haptics and axial displacement of the IOL along the optical axis of an eye. Haptic movement and broad haptic contact in the angle of the anterior chamber of an eye has the potential to cause damage to delicate structures within the eye such as the peripheral corneal endothelium, the trabecular meshwork and/or the iris. Movement of an IOL along the optical axis of an eye has the potential to cause the IOL to contact and damage the delicate corneal endothelial cell layer of the eye. Also, angle positioned IOLs of current designs, whether formed of either softer or more rigid materials, tend to deflect along the optical axis of an eye when the haptics are compressed. IOL manufacturers provide a wide range of IOL sizes to more precisely fit IOLs to each particular patient's eye size. Providing a wide range of IOL sizes is an attempt to minimize the potential for haptic compression and the associated axial displacement of the IOL optic along the optical axis of an eye.
Because of the noted shortcomings of current IOL designs, there is a need for aphakic and phakic anterior chamber IOLs designed to eliminate haptic contact and movement in the angle of the anterior chamber and eliminate axial displacement of the IOL optic portion along the optical axis of the eye when compressive forces are exerted against the outer edges thereof. By eliminating an IOL's haptic and optic movement within the angle and within the anterior chamber, more certain refractive correction may be achieved and the risk of delicate tissue damage may be reduced.
SUMMARY OF THE INVENTION
An anterior chamber iris fixated intraocular lens (IOL) made in accordance with the present invention has an optic portion with an outer peripheral edge and two or more but preferably two haptic elements for supporting the optic portion in a patient's eye. Two haptic elements are preferred in the present invention to provide IOL stability and to minimized points of fixation on the iris. A lens having two haptic elements is balanced or stabilized by having one haptic element formed on one edge of the optic portion and the second haptic element formed on an opposite edge of the optic portion. Both of the haptic elements on the optic portion are preferably of a plate-like form designed to allow the IOL to be easily folded, rolled and/or compressed for implantation thereof within an eye through a relatively small incision preferably using an inserter. Each haptic element is manufactured with an attachment aperture preferably centered in an outer free end portion thereof, an attachment slot formed in conjunction with the attachment aperture and a tissue clasp formed in conjunction with the attachment aperture for ease in securely attaching the tissue clasp on the anterior surface of the iris of an eye. The tissue clasps are designed to secure the IOL within the anterior chamber of an eye by securely engaging the relatively non-mobile outer peripheral edge of the iris of an eye. Each haptic element also has an inner portion opposite the outer free end portion. The inner portion of the haptic element is preferably connected to or integrally formed with the outer peripheral edge of the optic portion of the IOL.
Accordingly, it is an object of the present invention to provide intraocular lenses for use in aphakic and phakic eyes.
Another object of the present invention is to provide intraocular lenses for use in aphakic and phakic eyes, which eliminate anterior chamber angle contact.
Another object of the present invention is to provide intraocular lenses for use in aphakic and phakic eyes, which minimize axial displacement of the optic portions of the lenses along the optical axis of the eyes.
Another object of the present invention is to provide intraocular lenses that allow for increased ease of implantation thereof.
Another object of the present invention is to provide intraocular lenses that allow for implantation using an inserter.
Another object of the present invention is to provide intraocular lenses for use in aphakic and phakic eyes, which minimize damage to tissues in the interior of the eyes.
Still
Hoffmann Laurent G.
Stenger Donald Carrol
Bausch & Lomb Incorporated
McGuire Katherine
Miller Cheryl
Snow Bruce
LandOfFree
Iris fixated intraocular lenses does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Iris fixated intraocular lenses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Iris fixated intraocular lenses will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3365863