Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...
Reexamination Certificate
2001-11-26
2004-05-04
Kim, Vickie (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Heterocyclic carbon compounds containing a hetero ring...
C514S555000, C514S621000, C424S484000, C424S488000
Reexamination Certificate
active
06730667
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention generally relates to surgery and to a method and means for introducing or removing material from the body for therapeutic purpose. More specifically, the invention relates to apparatus and method in which electrical energy is applied to the body, such as by iontophoresis. Similarly, the invention may have application in a method and apparatus for surgery in which material is introduced into or removed from a body orifice or inserted or removed subcutaneously other than by diffusing through skin. The invention has application to a method of enhanced absorption of therapeutic material using iontophoretic treatment. A specific focus is blocking pain by precision administration of suitable treatment.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
Treatment of pain in humans is a topic of increasing research emphasis. One promising approach is by use of topical cocktails of ingredients for blocking pain from many origins. Rather than offering mere additive results, the multi-component cocktail of ingredients promises an unexpectedly high level of efficacy. Another developing approach is the use of improved delivery systems, which often can be used for the administration of treatments for diseases and conditions not solely limited to pain. Such delivery systems employ, gels creams, ointments, patches, bioadhesives, and iontophoresis that can deliver a variety of pharmaceuticals, alone or in combined administration. These approaches are exemplified in the following patents.
U.S. Pat. No. 5,900,249 to Smith discloses treatment of specific types and causes of pain by administration of a multi-component topical composition. For example, one component offers anesthetic pain relief that masks pain but does not correct the underlying cause. Another component reduces the sensation of pain by alleviating the physiological and neurotransmitter etiology of the pain. Each of the various active components functions differently in order to treat pain comprehensively, regardless of causes. Multiple components include, first, a vasodilating agent such as nifedipine; second, an antiinflammatory agent to reduce pain mediated by prostaglandins; third, a membrane stabilizing agent such as carbamazepine; and fourth, seratogenic and nonadrenergic reuptake inhibitor. These may be supplemented with a topical anesthetic and an anti-inflammatory steroid. These medications are delivered in a gel, ointment, or cream.
U.S. Pat. No. 5,837,289 to Grasela discloses a general purpose delivery system that employs transdermal delivery of medication in a patch. Iontophoresis is useful with the medication in the patch to increase skin permeation. A topical delivery system may use a cream carrying the desired medication plus penetration enhancers.
U.S. Pat. No. 6,210,394 Demopulos discloses a cocktail of pain blocking agents for topical administration by irrigating with combined inhibitors for both pain and inflammation. The treatment addresses pain caused by multiple distinct sources of pain, including prostaglandin, bradykinin, histamine, and serotonin. Each source can be inhibited by application of the corresponding receptor antagonists. The cocktail of anti-pain/anti-inflammation agents can be composed of fourteen classes of receptor antagonists and agonists, plus optional anti-spasm agents. An aspect of the treatment is a resulting synergy in certain combinations, believed to result from cross talk between various signaling pathways.
The practice of iontophoresis is useful to deliver a drug to a subject by driving charged ions of the drug through the skin of the subject by applying an electric potential. The effective component of the drug must carry a charge, and the electrical apparatus must be polarized in the proper direction to deliver the charged component. For example, a patch containing a drug with positive charge is applied to the skin of a subject. The patch is connected to the iontophoretic delivery system at the positive electrode. A negative electrode is connected elsewhere to the subject to complete a closed pathway for the electric current.
A recent and representative discussion of iontophoresis appears in U.S. Pat. No. 6,235,013 to Tapper. An iontophoretic patch and administration system employ alternating current of low frequency in order to avoid problems of skin damage and pH imbalance during administration.
Electrical probes can detect numerous topical points in the skin that show a dramatic drop in skin resistance, as measured in meg ohms. These points are neurodermal points and are identified as Langerhans complexes. They have a pattern in dermis tissues much like a grid. The presence of these neurodermal points has been known for a long time. In ancient China, equivalent points were known as points of Chi or energy, and in India they were called Prahna. In fact, they are a normal complex of afferent and efferent A delta sensory myelinated nerves, small unmyelinated “C fibers,” and tiny endocrine organelles. Such structures are capable of releasing NO, nitric oxide, and gamma amino butyric acid (GABA). They are also capable of locally releasing a variety of substances. These include Ca
++
ions via the NMDA, aminocyclopentane-1,3-dicarboxylate (ACPD) receptors; substance P peptide; alpha-amino-3-hydroxy-5 methyl-4-isoxazolepropionic acid (AMPA) receptors; and glutamate.
Persons born without Langerhans complexes in the superficial dermis cannot suffer pain. Thus, the pain process requires the projection of painful nociceptive afferents from superficial and deep structure onto the dermal grid of the Langerhans network. The afferent modulation at this level of preprocessing determines if there is painful perception at each dermatome with central projection of these neural holograms to ever-higher levels of modulation at the dorsal horn, substantia gelatinosa areas V to IX, rostrally to the thalamus and tectum of the midbrain and onto the cortical modulation. This process determines patterns of proprioceptive interpretation and, thus, muscle static and dynamic firing patterns. Spasm is modulated via red fiber tonic muscle fibers that cause spinal and joint subluxation, and further nociceptor stimulation via A delta afferent pain fibers and C fiber pain afferents. The earliest pattern on EMG is spectral imbalance in surface EMG with non-physiologic phase shifts in axial paraspinal muscle firing and increased greater than 400 Hz efferents to the spinal myotome or peripheral muscles.
A number of known electrical probes employ an electric current or resistance measurement to aid in administering drugs or performing a medical procedure. A representative example appears in U.S. Pat. No. 3,862,162 to Colyer, which combines a hypodermic needle with an electrical probe. The probe is useful to locate a nerve, which can be treated by injecting a selected medicament through the needle. U.S. Pat. No. 5,853,373 to Griffith et al. suggests the use of a similar needle and probe combination in order to locate a nerve for administration of anesthetic. U.S. Pat. No. 5,284,153 to Raymond et al. suggests using a nerve stimulator either to assist in administration of regional anesthesia or to guard against cutting specific nerves during surgery.
Thus, a technology is known for locating a nerve or neurodermal point by electrical detection, and this has aided in administering certain types of treatments or drugs. However, this technology has not been adapted to improve the efficiency or effectiveness iontophoresis. In particular, the method of this invention improves iontophoresis by first using a probe to locate a neurodermal point, and then placing a patch containing the drug over the located point, and driving the drug into the subject by applying an electrical current across the patch and the subject's skin at the located point. The effectiveness of the treatmen
Kim Vickie
Rost Kyle W.
LandOfFree
Iontophoresis disc pain blocker does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Iontophoresis disc pain blocker, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Iontophoresis disc pain blocker will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3229278