Chemistry: electrical current producing apparatus – product – and – Having earth feature
Reexamination Certificate
1998-12-29
2001-02-13
Bell, Bruce F. (Department: 1741)
Chemistry: electrical current producing apparatus, product, and
Having earth feature
C429S047000, C429S047000, C429S047000, C429S010000, C429S010000, C502S101000
Reexamination Certificate
active
06187467
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods for improving fuel cell performance involving ionomer impregnation of fuel cell electrode substrates. In particular, it relates to methods for improving performance in liquid feed fuel cells, such as direct methanol fuel cells (DMFCs).
BACKGROUND OF THE INVENTION
Electrochemical fuel cells convert reactants, namely, fuel and oxidant fluid streams, to generate electric power and reaction products. Electrochemical fuel cells generally employ an electrolyte disposed between two electrodes, namely a cathode and an anode. An electrocatalyst is needed to induce the desired electrochemical reactions at the electrodes. In addition to electrocatalyst, the electrodes may also comprise a porous electrically conductive sheet material, or “electrode substrate”, upon which the electrocatalyst is deposited. The electrocatalyst may be a metal black, an alloy or a supported metal catalyst, for example, platinum on carbon.
A particularly attractive fuel cell is the solid polymer electrolyte fuel cell that employs a membrane electrode assembly (“MEA”). The MEA comprises a solid polymer electrolyte or ion-exchange membrane disposed between the two electrode layers. Flow field plates for directing the reactants across one surface of each electrode substrate are disposed on each side of the MEA.
Electrocatalyst can be incorporated at the electrode/electrolyte interfaces in solid polymer fuel cells by applying it in a layer on either an electrode substrate or on the membrane electrolyte. In the case of the former, electrocatalyst particles are typically mixed with a liquid to form a slurry or ink, which is then applied to the electrode substrate. While the slurry preferably wets the substrate surface to some extent, it is important that it doesn't penetrate too deeply into the substrate or else some of the catalyst will not be located at the desired membrane electrolyte interface.
Effective electrocatalyst sites are accessible to the reactant, are electrically connected to the fuel cell current collectors, and are ionically connected to the fuel cell electrolyte. Electrons and protons are typically generated at the anode electrocatalyst. The electrically conductive anode is connected to an external electric circuit, which conducts an electric current. The electrolyte is typically a proton conductor, and protons generated at the anode electrocatalyst migrate through the electrolyte to the cathode. Electrocatalyst sites are not productively utilized if the protons do not have a means for being ionically transported to the electrolyte. Accordingly, coating the exterior surfaces of the electrocatalyst particles with ionically conductive ionomer coatings has been used to increase the utilization of electrocatalyst exterior surface area and increase fuel cell performance by providing improved ion-conducting paths between the electrocatalyst surface sites and the electrolyte. The ionomer can be incorporated in the catalyst ink or can be applied on the catalyst-coated substrate afterwards.
A measure of electrochemical fuel cell performance is the voltage output from the cell for a given current density. Higher performance is associated with a higher voltage output for a given current density or higher current density for a given voltage output. Increasing effective utilization of the electrocatalyst enables the same amount of electrocatalyst to induce a higher rate of electrochemical conversion in a fuel cell resulting in improved performance.
A broad range of reactants can be used in electrochemical fuel cells and such reactants may be delivered in gaseous or liquid streams. For example, the fuel stream may be substantially pure hydrogen gas, a gaseous hydrogen-containing reformate stream, or aqueous methanol in a direct methanol fuel cell (DMFC). The oxidant may, for example, be substantially pure oxygen or a dilute oxygen stream such as air.
Solid polymer fuel cells that operate on liquid reactant streams (“liquid feed fuel cells”) have somewhat different requirements than those operating on gaseous reactant streams. The requirements for effectively distributing a liquid reactant stream and making reactant contact with the electrocatalyst layer are different than for a gas stream. For example, hydrophobic components such as PTFE are typically employed in gaseous feed fuel cells, in part, to render electrodes less wettable and to prevent “flooding”. (Flooding generally refers to a situation where the pores in an electrode are so full of liquid, e.g. reaction product water, that the flow of the gaseous reactant through the electrode becomes impeded.) In liquid feed fuel cells however, it can be desirable to make components in the anode (e.g. catalyst layer) more wettable by the liquid fuel stream in order to improve access of the reactant to the electrocatalyst sites.
In early DMFCs, sulfuric acid was incorporated in the liquid methanol fuel stream in order to enhance proton conduction at the anode. The presence of sulfuric acid however may limit the performance of the fuel cell in other ways and impose constraints on the fuel cell hardware for corrosion reasons. Acid electrolyte additives are no longer considered necessary to obtain reasonable performance from a DMFC. Instead, ionomeric coatings of the anode in the vicinity of the catalyst layer can provide for satisfactory proton conduction. Such an ionomeric coating may also improve wetting and hence access of the aqueous methanol fuel.
While it may seem desirable generally to improve the wetting of a DMFC anode, treatments that improve wetting of the anode per se, do not necessarily result in a net performance improvement.
For example, an ionomer coating also can act as a barrier to the transport of electrons, liquid fuel, and reaction product gases (e.g. carbon dioxide from methanol oxidation) thereby reducing net performance of fuel cells. Thus, the net effect of such treatments is not always possible to predict. Recently, it was disclosed in U.S. patent application Ser. No. 09/173,845, filed Oct. 16, 1998 by the same applicant as the present application and previously incorporated herein by reference in its entirety, that the performance of liquid feed fuel cells can be improved by impregnating the electrode substrates of the fuel cell with ionomer before application of the electrocatalyst. After the electrocatalyst has been applied, it may be advantageous to apply additional ionomer.
SUMMARY OF THE INVENTION
An ionomer impregnation method may be used to improve the performance of a liquid feed, solid polymer electrolyte fuel cell. In operation, a liquid feed fuel cell has at least one electrode supplied with a liquid reactant stream. The electrode comprises a substrate and an electrocatalyst and the method comprises impregnating the substrate with a first proton conducting ionomer before applying electrocatalyst to the impregnated substrate. Such impregnation has been found to be advantageous for use with carbonaceous substrates (e.g., carbon fiber paper) employed in the electrodes of direct liquid feed fuel cells. Liquid reactant streams most commonly in use at this time are primarily fuel streams, including aqueous solutions of alcohols, ethers, and the like. Impregnation is particularly advantageous for use in the anodes of direct methanol fuel cells (DMFCs). At present, a preferred electrocatalyst for use in DMFCs is a platinum and ruthenium alloy.
The first proton conducting ionomer may be selected from a variety of ionomers including fluorinated and perfluorinated functionalized polyolefins and polyethers or polystyrenes. It may be similar to the membrane electrolyte of the MEA into which the electrode substrate is to be incorporated. For example, the first proton conducting ionomer may be a poly(perfluorosulphonic acid) such as Nafion™ of various equivalent weights available from DuPont. Fuel cell performance can be improved when the substrate is impregnated with about 0.1 mg/cm
2
to about 0.3 mg/cm
2
loading of poly(perfluorosulphonic acid).
Preferably, a second proton
Colbow Kevin M.
Wilkinson David P.
Zhang Jiujun
Ballard Power Systems Inc.
Bell Bruce F.
McAndrews Held & Malloy Ltd.
LandOfFree
Ionomer impregnation of electrode substrates for improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ionomer impregnation of electrode substrates for improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ionomer impregnation of electrode substrates for improved... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2613092