Ionically conductive polymer gels

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Include electrolyte chemically specified and method

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S303000, C429S306000, C429S324000, C429S328000, C429S339000, C429S341000, C252S062200, C252S500000, C252S518100, C204S414000

Reissue Patent

active

RE037700

ABSTRACT:

This invention relates to bulk ionically conductive polymer gels and their preparation, and to galvanic cells containing them.
BACKGROUND OF THE INVENTION
The most commonly used electrolytes are fluid liquids which comprise solutions in a liquid solvent of solute ionic species. Such fluid liquid electrolytes, on incorporation into a galvanic cell, permit migration of ions between the electrodes of the cell and, as a consequence, the provision of electric free energy to a closed external circuit. Despite their widespread use, such electrolytes nonetheless suffer from several disadvantages. Thus, they are often corrosive, leading to leakage from cells and they do not provide a firm barrier between the electrodes when required to assist in stabilizing the inter-electrode distance and in preventing physical loss of electrode material from the electrode surface.
In order, in part, to overcome the disadvantages inherent in fluid liquid electrolytes, particularly in relation to galvanic cells, considerable effort has been expended in attempts to provide solid or highly viscous polymeric electrolytes which contain salts which display mobility, under appropriate conditions, of at least some of the ionic species present. The solid polymeric electrolytes are capable of acting in thin film form as electrode separators and in solid-state cells can deform while maintaining good contact with the electrodes, thus minimizing problems arising from mechanical strain arising either from mechanical stresses during use or volume changes during the charge/discharge cycle. A particular area of importance is in cells that do not depend upon water as a component of the electrolyte, such as lithium cells where water and other materials capable of reacting with lithium are undesirable. The potential uses for such materials are not limited to batteries but include, inter alia, sensor devices and thermoelectric energy convectors.
A prominent polymeric material for this purpose has been poly(ethylene oxide) (PEO), in which certain salts are soluble and can form complexes. The electrical and mechanical properties of such polymer electrolyte materials, although encouraging, require further enhancement before commercialisation can be envisaged. Improvements in the properties have been obtained using graft copolymers in which short poly(ethylene oxide) chains are present as pendant units attached to a long main chain. Such materials have been described in GB-A-2161488. Another means of improving the mechanical properties is to use block copolymers in which short poly(ethylene oxide) chains alternate with other units such as polysiloxane. Yet another means is to cross-link a poly(ethylene oxide) with an epoxy compound. In each case the polymer electrolyte contains a suitable salt complexed with the polymer to provide the ionic species required for conductivity. In all these cases the conductivities reported at 25° C. or at room temperature are at best about 10
−4
Siemens per cm. These values are an order of magnitude less than a commonly cited target for commercial realization of 10
−3
Siemens per cm.
It is also possible to provide polymer electrolytes which consist of a mixture of a polymer, preferably of high molecular weight, with a compound of low molecular weight that is a solvent for the polymer in the range of temperatures in which the electrolyte is to be sued, together with an appropriate salt that is soluble in the polymer and in the compound of low molecular weight. For example, as disclosed in GB-A-2212504 and 2216132, polymer electrolytes consisting of poly-N,N-dimethylacrylamide or closely related poly-N-substituted acrylamide of high molecular weight plasticized with dimethylacetamide together with lithium trifluoromethane sulphonate (lithium triflate) as the salt component have been evaluated and found to exhibit good conductivities together with good mechanical properties. These polymer electrolytes are gel-like in character, but the compound of low molecular weight must not exceed a certain limiting concentration above which the system loses its gel-like character and begins to flow. The ionic conductivity is higher at the higher concentrations of the compound of low molecular weight, but the material becomes increasingly more flexible. Conductivities of 7×10
−3
Scm
−1
at 20° C. are obtainable but this requires at least 60% or more of the low molecular weight compound and at this level the mechanical properties are poor. It has proved possible by cross-linking the polymer to improve the mechanical properties to a useful level with as much as 80% of the low molecular weight compound present, and thus to obtain conductivities at 20° C. exceeding 10
−3
Scm
−1
. These products may prove of commercial interest, but the process for making the cross-linked polymer electrolyte film is somewhat complex for convenient incorporation into a process for cell manufacture.
DESCRIPTION OF THE INVENTION
This invention seeks to provide ionically conductive materials that provide high bulk tonic conductivities at ambient temperature together with good mechanical properties.
According to one aspect of the invention there is provided an ionically conductive, ion-containing gel having a bulk ionic conductivity at 20° and 10 kHz greater than 10
−4
Siemens per centimetre and a dynamic modulus at 10 Hz greater than 10
3
Pa. preferably greater than 10
4
Pa, e.g. >10
5
Pa, wherein the gel consists of a minor amount of a crystallizable polymer such as a polyester, a major amount of an organic compound that is a solvent for a salt at 20° C. but is not a solvent for the crystallizable polymer at 20° C., and a salt dissolved in the organic compound at a concentration greater than 4% by mass based on the organic compound. The said minor amount is up to 50% by mass, preferably up to 40%, e.g. at least 5% such as at least 10%, typically 20-30%.
The ion-containing gels of this invention can provide better ionic conductivities both an ambient and elevated temperatures than polymer electrolytes based on polymer-salt complexes previously described and better mechanical properties than polymer electrolytes of good ionic conductivity based on polymer-salt-plasticizing solvent complexes previously described.
The ion-containing gels of this invention can normally be regarded as thermoreversible gels in which the junctions are physical associations, possibly corresponding with crystal structures comprising only a small portion of the polymer chains.
The crystallizable polymer may itself be capable of complexing with the salt through containing, for example, ether or amide groups, but it is not essential that the crystallizable polymer should dissolve or complex with the salt. This contrasts with previously described ion-conducting electrolyte systems based upon polymers where it has been essential that the polymer should dissolve or complex the salt and desirable that the polymer should be non-crystallizable.
Suitable crystallizable polymers for use in this invention include crystallizable polyesters such as poly(ethylene terephthalate), poly(1,4-butylene terephthalate) and poly(3-oxybutanoate), crystallizable polyamides such as poly (hexamethylene adipamide) and poly(m-phenylene isophthalamide), crystallizable polyethers and crystallizable substituted (e.g. halo) polyolefins such as substituted polyvinylidenes. Further examples include polyhydroxybutyric acid, poly(metaxylylene adipamide), poly(vinylidene fluoride), polyoxymethylene and polyoxyethylene. The crystallizable polymer is normally dissolved at a high temperature in the other components and can provide the required mechanical rigidity for the product at lower temperatures. If inadequate crystallizable polymer is present, the mechanical properties and dimensional stability will suffer. The crystallizable polymer is preferably of a sufficiently high molecular weight to form coherent films and fibres. In general, the higher the molecular weight of the polymer, the better the mechanical properties of the gel structure for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ionically conductive polymer gels does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ionically conductive polymer gels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ionically conductive polymer gels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900188

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.