Ionic enhanced dialysis/diafiltration system

Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S257200, C210S321600, C210S321710, C210S321720, C210S433100, C210S645000, C210S647000

Reexamination Certificate

active

06821431

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to dialysis and hemodiafiltration in general and, more particularly, to improved hemodiafiltration methods and devices for removal of blood toxins.
BACKGROUND OF THE INVENTION
Hemodialysis and Hemodiafiltration are well known methods for removing toxic substances from a patient's blood, thereby reducing the level of toxins in the patient's blood as part of an extracorporeal blood cleansing system. Both these methods are based on flowing blood through a cartridge containing a semi-permeable membrane which separates the cartridge into two compartments. In general, hemodialysis is a process whereby blood flows through a blood-side compartment of the cartridge, while a cleansing solution, i.e., a dialysate solution, flows through a dialysate-side compartment of the cartridge. Toxins are removed from the blood by diffusion across the semi-permeable membrane from the blood-side compartment to the dialysate-side compartment. The rate of diffusion is determined by the concentration gradient established between a higher concentration of toxins in the blood relative to the dialysate fluid. Hemodiafiltration is process whereby the normal removal of toxins by diffusion is augmented by a convective flow of plasma water across the semi-permeable membrane which assists in carrying toxins by bulk flow of fluid from the bloodside of the membrane to the dialysate side of the membrane. The transportation of plasma water across the semi-permeable membrane is achieved by establishing a pressure gradient, generally referred to as Transmembrane Pressure (TMP), across the membrane. In hemodiafiltration, an equivalent amount of a substitution fluid, or replacement fluid, must be added to the blood to replace the plasma water that is filtered across the membrane. This substitution fluid is generally added either before the blood enters the cartridge (pre-dilution mode) or after the blood exits the cartridge (post-dilution mode).
Hemodiafiltration systems using two cartridges connected in series are also known in the art. In such systems, a first cartridge is used as a conventional diafiltration cartridge providing simultaneous diffusion and filtration of plasma water across the semi-permeable membrane. In a second cartridge, toxins are diffused from the blood to the dialysate fluid, and a reverse pressure gradient is used to reverse-filter dialysate fluid from the dialysate-side compartment, across the membrane, and into the blood-side compartment. The reverse-filtered dialysate fluid serves as a substitution fluid to replace the amount of plasma water that is filtered from the blood-side compartment to the dialysate-side compartment in the first cartridge. Such a method is described in J. H. Miller et al., “Technical Aspects of High-Flux Hemodiafiltration for Adequate Short (Under 2 Hours) Treatment,” Transactions of American Society of Artificial Internal Organs (1984), pp. 377-380.
SUMMARY OF THE INVENTION
Certain hemodialysis/diafiltration applications use two cartridges connected in series. The dialysate fluid in the first cartridge is made hypertonic or hypotonic (by adjusting the electrolyte levels of the dialysate stream) to improve toxin removal efficiency. This method is disclosed in PCT Application No. PCT/US99/25804 entitled “Non-Isosmotic Diafiltration System” filed in the name of Collins et al., the entirety of which is hereby incorporated by reference.
One embodiment of the present invention includes a method whereby hydrogen ion concentration (or pH) of the dialysate fluid entering a first filtration cartridge is reduced by introducing a secondary acid solution. The second filtration cartridge then serves to correct for blood pH shifts occurring in the first filtration cartridge. One advantage of this method is that it allows one to carry out the diffusion and/or diafiltration process in the first cartridge outside the normal limit of blood pH. This method improves the removal of certain substances, such as protein-bound substances that disassociate more readily from proteins at low pH. This method also allows for enhanced removal of other substances that may be affected by changes in the number of charged polar groups (acidic or basic) and/or structural changes of blood proteins (i.e., those proteins circulating in the blood stream or those protein that accumulate and/or adsorb near the semi-permeable membrane) due to changes in pH.
An additional benefit is possible when the acid that is used in the dialysate stream of the first cartridge is citric acid. In this case, the ionized citrate molecule can diffuse into the blood compartment of the first cartridge where it binds to ionized calcium. This has the potential effect of reducing the amount of clotting in the cartridges as citrate has certain anti-coagulation properties. Ionized calcium is replaced in the blood stream by back diffusion and/or back filtration of calcium from the standard dialysate that passes through the second cartridge. If substitution fluid is introduced between the two cartridges as described above, this also acts as a source of calcium for the blood stream.
It is a further object of the invention to provide hemodialysis or hemodiafiltration method using two cartridges (or two stages), preferably in series, that improves clearance of certain substances by introducing an acidic solution into the dialysate fluid stream of the first cartridge. The process is such that blood in the first cartridge is dialyzed or diafiltered against a low pH dialysate solution, while blood in the second cartridge is dialyzed or diafiltered against a standard dialysate (i.e., within a pH range from 7.0 to 7.8). The second cartridge then may serve three main functions which are 1) to correct for blood pH shifts caused by the low pH dialysate in the first cartridge, 2) to continue to remove blood toxins by diffusion or diafiltration against standard dialysate, and 3) to correct for electrolyte imbalances in the blood. In a hemodialysis application, correction of blood pH and electrolyte imbalance is accomplished by diffusion of neutralizing substances (such as bicarbonate) and electrolytes across the semi-permeable membrane separating the blood and dialysate compartments of the second cartridge. In a hemodiafiltration application, these corrections are accomplished by introducing a substitution fluid containing neutralizing substances (such as bicarbonate) and electrolytes into the blood stream in addition to diffusion across the semi-permeable membrane of the second cartridge.
The present invention may be embodied in an improved dialysis machine that allows for the addition of a secondary acid solution into the dialysate fluid path. The machine may include other basic components used in current dialysis machines, such as a water preparation module to degas and heat water necessary for preparing dialysate, an ultrafiltration control system which may include a flow balancing system and an ultrafiltration (UF) pump, a dialysate proportioning system which may introduce dialysate concentrates into the water stream, and extracorporeal monitoring and control components which may include a blood pump for circulating blood through the extracorporeal circuit.
When performing hemodiafiltration, a system of the present invention may include a substitution fluid system (including pump and substitution fluid filters when preparing a substitution fluid on-line using dialysate fluid), and an interdialysate flow control system (which may include an interdialysate pump) to regulate the relative ultrafiltration rates of the two dialyzer cartridges.
In a preferred embodiment, blood to be cleansed flows into a first dialyzer or diafilter cartridge. The cartridge contains a semi-permeable membrane that separates the cartridge into two compartments, a first compartment containing the blood to be cleansed, and a second compartment containing a dialysate fluid. The pH of the dialysate fluid in this compartment is reduced below that of standard dialysate (i.e., pH<7.0) by addition of a second acid strea

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ionic enhanced dialysis/diafiltration system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ionic enhanced dialysis/diafiltration system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ionic enhanced dialysis/diafiltration system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3356298

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.