Radiant energy – Ionic separation or analysis – Ion beam pulsing means with detector synchronizing means
Reexamination Certificate
1999-05-17
2001-11-27
Breman, Jack (Department: 2881)
Radiant energy
Ionic separation or analysis
Ion beam pulsing means with detector synchronizing means
C250S282000
Reexamination Certificate
active
06323482
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to instrumentation for characterization of molecules based on their structures and mass-to-charge ratios as gas-phase ions, and more specifically to such instrumentation which provides for rapid and sensitive analysis of composition, sequence, and/or structural information relating to organic molecules, including biomolecules, and inorganic molecules.
BACKGROUND OF THE INVENTION
Biological molecules, such as DNA, RNA, proteins, carbohydrates and glycoconjugates, are comprised of repeating subunits typically referred to as residues. The sequence of such residues ultimately defines the structure and function of the biomolecule and determines how it will interact with other molecules.
A central part of almost all conventional sequencing strategies is the analysis of complex sets of sequence-related molecular fragments by chromatography or by polyacrylamide gel electrophoresis (PAGE). PAGE-based automated sequencing instruments currently exist and typically require a number of fluorescent dyes to be incorporated into the base-specifically terminated biomolecule product, which is then processed through the polyacrylamide gel. The discrete-length product molecules are detected near the bottom of the gel by their emitted fluorescence following excitation by a radiation source.
Such automated instruments are typically capable of generating sequence information for biomolecules having 500 or more residues at a rate of 10-20 times faster than manual methods. However, both the manual and automated PAGE techniques suffer from several drawbacks. For example, both approaches are labor-intensive since a gel must be prepared for each sequencing run. Also, while automated PAGE systems may offer faster analysis times than a manual approach, the accuracy of such systems is limited by artifacts generated by non-uniform gel matrices and other factors. Such automated systems are generally not equipped to accurately process the effects of such artifacts, which are typically manifested as “smiling” compressions, faint ghost bands, and the like. Manual interpretation of such results is therefore often required which significantly increases analysis time.
Researchers have, within the past several years, recognized a need for more rapid and sensitive techniques for analyzing the structure and sequences of biomolecules. Mass spectrometry (MS) techniques, such as time-of-flight mass spectrometry (TOFMS) and Fourier Transform ion-cyclotron-resonance mass spectroscopy, are well known techniques for quickly and accurately providing ion mass information from which sequence and structural determinations can be made. As is known in the art, TOFMS systems accelerate ions, via an electric field, toward a field-free flight tube which terminates at an ion detector. In accordance with known TOFMS principles, ion flight time is a function of ion mass so that ions having less mass arrive at the detector more quickly than those having greater mass. Ion mass can thus be computed from ion flight time through the instrument.
FIG. 1
demonstrates this principle for a cytochrome-c sample, having a known mass to charge ratio (m/z) of 12,360 da, and a lysozyme sample, having a known mass to charge ratio (m/z) of 14,306 da. In
FIG. 1
, signal peak
10
, having a flight time of approximately 40.52 &mgr;s corresponds to the lighter cytochrome-c sample, and signal peak
12
, having a flight time of approximately 41.04 &mgr;s, corresponds to the heavier lysozyme sample.
Due to the significantly decreased sample preparation and analysis times of MS techniques over the above-described PAGE technique, several MS sequencing strategies have recently been developed. Such MS sequencing techniques are generally operable to measure the change in mass of a biomolecule as residues are sequentially removed from its end. Examples of two such techniques, each involving elaborate pre-MS processing techniques, are described in U.S. Pat. No. 5,210,412 to Levis et al. and U.S. Pat. No. 5,622,824 to Köster.
In order to provide for the capability of determining sequence and structural information for large biomolecules, it has been recognized that MS techniques must accordingly be capable of generating large ions. Currently, at least two techniques are known for generating large ions for spectral analysis; namely electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI). While both large ion generating techniques are readily available, known MS techniques are limited in both the quantity and quality of discernable information. Specifically, for large biomolecules, defined here as those containing at least 50 residues, mass spectra of parent and sequence related fragment ions become congested to the degree that mass (TOF) peaks overlap.
One solution to the problem of congested mass spectra is to increase the mass resolution capability of the MS instrument. Recent efforts at increasing such resolution have been successful, and complete sequence information for a 50 base pair DNA has been obtained using a Fourier Transform ion cyclotron resonance (FTICR) instrument. However, such instruments are extremely expensive, not readily available, and because of their extremely high vacuum requirements, they are generally not suitable for routinely sequencing large numbers of samples.
Another solution to the problem of congested mass spectra is to pre-separate the bulk of ions in time prior to supplying them to the ion acceleration region of the MS instrument. Mass spectrometry can then be performed sequentially on “packets” of separated ion samples, rather than simultaneously on the bulk of the generated ions. In this manner, mass spectral information provided by the MS instrument may be spread out in another dimension to thereby reduce the localized congestion of mass information associated with the bulk ion analysis.
One known ion separation technique which may be used to pre-separate the bulk of the ions in time prior to MS analysis is ion mobility spectrometry (IMS). As is known in the art, IMS instruments typically include a pressurized static buffer gas contained in a drift tube which defines a constant electric field from one end of the tube to the other. Gaseous ions entering the constant electric field area are accelerated thereby and experience repeated collisions with the buffer gas molecules as they travel through the drift tube. As a result of the repeated accelerations and collisions, each of the gaseous ions achieves a constant velocity through the drift tube. The ratio of ion velocity to the magnitude of the electric field defines an ion mobility, wherein the mobility of any given ion through a high pressure buffer gas is a function of the collision cross-section of the ion with the buffer gas and the charge of the ion. Generally, compact conformers, i.e. those having smaller collision cross-sectional areas, have higher mobilities, and hence higher velocities through the buffer gas, than diffuse conformers of the same mass, i.e. those having larger collision cross-sectional areas. Thus, ions having larger collision cross-sections move more slowly through the drift tube of an IMS instrument than those having smaller collision cross-sections, even though the ions having smaller collision cross-sections may have greater mass than those having higher collision cross-sections. This concept is illustrated in
FIG. 2
which shows drift times through a conventional IMS instrument for three ions, each having a different mass and shape (collision cross-section). As is evident from
FIG. 2
, the most compact ion
14
(which appears to have the greatest mass) has the shortest drift time peak
16
of approximately 5.0 ms, the most diffuse ion
18
has the longest drift time peak
20
of approximately 7.4 ms, and the ion
22
having a collision cross-section between that of ion
14
and ion
18
(which also appears to have the least mass), has a drift time peak
24
of approximately 6.1 ms.
Referring now to
FIG. 3
, an ion time-of-flight spectrum
26
, obtained from
Clemmer David E.
Reilly James P.
Advanced Research And Technology Institute, Inc.
Barnes & Thornburg
Breman Jack
LandOfFree
Ion mobility and mass spectrometer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ion mobility and mass spectrometer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ion mobility and mass spectrometer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2577671