Ion exchanged aluminum-magnesium silicate or fluorinated...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Silicon containing or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S233000, C502S234000, C502S235000, C502S240000, C502S237000, C502S251000, C502S263000, C502S102000, C502S103000, C502S117000

Reexamination Certificate

active

06376421

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to novel aluminum-magnesium silicate or fluorinated magnesium silicate aerogel materials that are useful, inter alia, as supports for Group 3-10 metal complexes used in the addition polymerization of monomers such as olefins to make high molecular weight homopolymers and copolymers. The materials are also useful as thickening or thixotropic agents for paints or greases, viscosity modifiers for oils and lubricants, ion exchange media, carriers for pigments, and supports for hydrogenation catalysts.
BACKGROUND
It is widely known that addition polymerization processes utilizing metallocene catalysts have been used to produce a wide range of new polymers for use in a variety of applications and products. Supported olefin polymerization catalysts are widely known and used in the gas phase and slurry polymerization of such olefins. Suitable support materials have included silica, alumina, aluminosilicates, clays, and other metal oxides.
In U.S. Pat. No. 5,529,965, and related patents, one type of supported metallocene catalyst is prepared by contacting a support material containing water with an aluminum trialkyl compound to prepare an alumoxane containing support material suitable for use in combination with metallocenes as olefin polymerization catalysts. In U.S. Pat. No. 5,362,825 pillared clays are used to provide supports for transition metal catalysts. The pillared clay is preferably prepared by reacting smectite clay with an aqueous solution of a polymeric cationic hydroxy metal complex, drying the solid product produced and then calcining the product. Preparation of pillared clays, also known as intercalated clays, is described in detail, in U.S. Pat. Nos. 4,248,739, 4,666,887, 4,367,163, 4,271,043, 4,248,739, 4,238,364, 4,216,188 and 4,176,090, among other references. Catalysts for olefin polymerization comprising a metallocene, an ion exchanging compound, especially a clay, and an organic aluminum compound, such as a trialkyl aluminum compound, are disclosed in U.S. Pat. No. 5,308,811. More recently, EP-A-658,576 disclosed the formation of modified clay containing supported catalysts containing a metallocene, wherein an ionic compound, especially a Bronsted acid salt, such as dimethylanilinium chloride, was included in the clay.
Delaminated clays, i.e., clay materials lacking in first order X-ray diffraction pattern and possessing a random orientation of platelets are a known class of materials. One technique for preparing such delaminated clay materials is by freezing an aqueous dispersion of a clay material and subsequently removing the water, such as by freeze drying. Such methods of preparation using non-pillared clays are disclosed in JP-A-01/103908 and JP-A-63/230581. T. J. Pinnavaia, “Preparation and Properties of Pillared and Delaminated Clay Catalysts”,
Heterogeneous Catalysts,
B. L. Shapiro, ed., Texas A&M University Press, College Station, Tex., (1984), disclosed a similar method using pillared clay starting materials. A second technique for preparing such delaminated clays using air drying rather than freeze drying is disclosed in U.S. Pat. No. 4,761,391. The teachings of all of the foregoing patents and publications, or their corresponding U.S. equivalent applications, are hereby incorporated by reference.
Despite the advance in the arts resulting from the use of the foregoing inventions and discoveries, it remains desired to provide catalyst supports and catalyst components having improved physical and chemical properties. In particular, a catalyst support or catalyst component for olefin polymerizations lacking in added cocatalytic substances, especially alumoxane or alumoxane type materials or Bronsted acid salts containing non-coordinating anions, are desired in order to reduce catalyst material costs. Especially desired are the use of extremely low density substances lacking in detrimental polar groups or intercalated substances that may react detrimentally with the active metal complexes used in the catalyst formulation.
SUMMARY OF THE INVENTION
According to one embodiment of the present invention there is provided an aluminum-magnesium silicate aerogel or fluorinated magnesium silicate aerogel which has been ion exchanged. The aerogel material of the present invention may also be calcined, chemically modified or functionalized, further ion exchanged, impregnated, coated with any chemical coating, particulated, or otherwise modified according to techniques known in the prior art or not previously known in the art, to adapt the same for particular end uses. It is understood that one or more of the foregoing steps may be performed on the aerogel and the same procedure may be repeated one or more times, in the same or a varied manner without departing from the scope of the present invention. In a preferred embodiment the aerogel is calcined, contacted with a functionalizing agent, treated with a catalyst activating material able to form active polymerization catalysts from group 3-10 metal complexes, and contacted with a group 3-10 metal complex or compound to yield an addition polymerization catalyst composition. If desired, the aerogel, before or after modification in the foregoing manner, can be treated with a propping agent, and/or formed into agglomerated particles in order to provide substantially uniform particle size substrates. When used in a gas phase or slurry polymerization such catalyst compositions are heterogeneous and may be referred to as a supported, polymerization catalyst composition.
In another embodiment of the invention there is provided a support material for use in preparing supported catalysts for addition polymerizations comprising an aluminum-magnesium silicate aerogel or fluorinated magnesium silicate aerogel. In a preferred embodiment the aerogel is in the form of agglomerated particles. Most preferably the aerogel is also ion-exchanged. Accordingly, the present invention also includes a supported addition polymerization catalyst comprising the previously described ion exchanged aluminum-magnesium silicate aerogel or fluorinated magnesium silicate aerogel, which has optionally been calcined, contacted with a functionalizing agent, treated with a catalyst activating material as previously described, treated with a propping agent, and/or agglomerated, and further optionally, treated with one or more group 3-10 metal complexes so as to deposit said complex onto the aerogel, said metal complex being deposited in an amount from 0.00001 to 1,000 mg/g of support.
Finally according to the present invention there is provided a process for polymerizing an addition polymerizable monomer, comprising contacting the monomer or a mixture comprising said monomer, with a composition comprising one or more of the above described addition polymerization catalysts. The use of such supported catalysts results in the highly efficient production of high molecular weight polymers over a wide range of polymerization conditions, especially at elevated temperatures. The present compositions are especially useful for catalyzing the solution phase, gas phase or slurry homopolymerization of ethylene or propylene or the solution phase, gas phase or slurry copolymerization of ethylene/propylene (EP polymers), ethylene/octene (EO polymers), ethylene/styrene (ES polymers) and ethylene/propylene/diene (EPDM polymers) wherein the diene is ethylidenenorbornene, 1,4-hexadiene, or similar nonconjugated diene. The foregoing polymeric materials are useful in the preparation of films for packaging or other uses, foamed structures for cushioning or insulating applications, and the preparation of fibers and solid molded objects.
DETAILED DESCRIPTION OF THE INVENTION
As used herein the term “aerogel” refers to an aluminum-magnesium silicate material or fluorinated magnesium silicate material that has been expanded so as to reduce the bulk density thereof to 1.0 g/cm
3
or less. Preferably, the material retains at least a partial lamellar structure. That is, in at least portions of the composition, alternating layers of alum

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ion exchanged aluminum-magnesium silicate or fluorinated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ion exchanged aluminum-magnesium silicate or fluorinated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ion exchanged aluminum-magnesium silicate or fluorinated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2825760

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.