Ion concentration meter

Electricity: measuring and testing – Electrolyte properties – Using a conductivity determining device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S442000, C324S444000

Reexamination Certificate

active

06646443

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ion concentration meter, and specifically, relates to an ion concentration meter which can measure a minute change in ion concentration at an extremely high accuracy and which is suitable for detection of a change in ion concentration, a leakage of ions or the like in various apparatuses or various systems.
BACKGROUND ART OF THE INVENTION
Measurement of the concentrations of ammonium, sodium, chloride, calcium, potassium, carbonate, silica, magnesium, sulphate ions and the like may be required in various industrial fields. For example, in a cooling water producing system, as described later, heat exchange is carried out between the side of a refrigerator and brine used for respective use points by a heat exchanger, and the cooled brine is stored in respective target tanks and used as cooling water at the respective use points. In such a system, particularly, because leakage of ammonia from the refrigerator side into the brine through the heat exchanger, etc. poses a problem, it is required to measure and monitor the concentration of the ammonia which has leaked into the brine. It is known that the concentration of ammonia in a sample has a correlation with the conductivity of the sample, and that it is effective to measure the conductivity of the sample for determining the concentration of ammonia.
Generally, in a conventional method for measuring a concentration of ammonia in a sample, for example, an aliquot amount of sample is collected for measurement, ammonia in the sample is evaporated by heating or using a strong alkali and the evaporated ammonia is trapped in deionized water, and the concentration of ammonia and the change of the concentration are detected by measuring a change in conductivity of water. In this method, sampling, cleaning, water for trapping, etc. are necessary, and there is a possibility that an apparatus for this method may become extremely expensive for achieving a high-accuracy measurement though it depends upon the performance of a conductivity meter.
Further, in a case where a conventional-type conductivity meter is used and when a base conductivity of a sample is very great, it is impossible to detect a minute change in concentration of ammonia. For example, assuming that the conductivity of a sample having a base conductivity of 3000 &mgr;S is changed by an amount of 0.5 &mgr;S by adding ammonia, the ratio of change in conductivity is about {fraction (1/1000)}, and it is impossible to measure such a change by a conventional-type conductivity meter in view of its noise level. Therefore, if a sample ion is absorbed to a low-conductivity water such as deionized water and 1 &mgr;S water is prepared for example, because the above-described change becomes about ½, detection may be possible. However, because such a measuring method is carried out at a repeated batch sampling formation, equipment and reagent therefor are required, and the measuring apparatus becomes expensive as well as the measuring operation becomes troublesome. Moreover, it is difficult to continuously measure the change in concentration.
DISCLOSURE OF THE INVENTION
Accordingly, an object of the present invention is to provide an ion concentration meter which can measure a change in ion concentration, such as of ammonia, with extremely high accuracy and sensitivity, which also can carry out continuous measurement, and which has a simple structure and can be manufactured at a low cost.
To accomplish the above object, an ion concentration meter according to the present invention comprises a difference conductivity meter wherein two conductivity measuring cells each having at least two electrodes are arranged in series in a flow path of a sample to be measured so that the sample being sent may make contact with the cells in sequence, the difference conductivity meter produces a difference between signals themselves detected by the conductivity measuring cells as a difference in conductivity of the sample between the positions of the conductivity measuring cells, and the ion concentration meter derives a change in ion concentration of the sample from the output from the difference conductivity meter, based on a predetermined correlation between a change in conductivity of the sample and a change in concentration of an ion to be detected in the sample.
In the present invention, although the ion to be detected is not particularly restricted, as ions capable of being effectively detected, at least one selected from the group consisting of ammonium, sodium, chloride, calcium, potassium, carbonate, silica, magnesium and sulphate ions can be cited.
In this ion concentration meter, it is preferred that a time delay column having a predetermined capacity is interposed between the above-described two conductivity measuring cells arranged in the flow path of the sample to be measured. Namely, at a condition where a time difference set by the time delay column is given, a difference between signals themselves detected by both conductivity measuring cells is produced, and based on the output, the change in ion concentration is measured. Although directly it is detected as a change in conductivity of a sample, since the correlation between a change in conductivity of the sample and a change in concentration of an ion to be detected in the sample has been determined in advance, by reading or by using a simple calculating means (a calculation program) based on the correlation, a change in ion concentration of the sample is easily derived.
Further, in the ion concentration meter, it is preferred that a degasifier capable of degasifying and defoaming the sample being sent is disposed upstream of the two conductivity measuring cells arranged in the flow path of the sample to be measured. By this, any influence of micro bubbles and the like on the measurement can be removed.
Further, the ion concentration meter can further comprise means for sending a sample to be measured with respect to a change in ion concentration to the flow path of the sample to be measured, and means for injecting a standard raw liquid into the sample to be measured with respect to a change in ion concentration. In such a structure, because it is possible to always compare the ion concentration of the sample with the standard raw liquid, for example, even if a change in ion concentration of the sample to be measured exhibits to be extremely minute during a short period of time and it is difficult to detect the minute change, in a case where the change is continued, when the change in ion concentration becomes more than a certain level after a certain time, the change can be surely detected. Further, a structure also can be employed for the ion concentration meter wherein a standard raw liquid, for example, a standard raw liquid having a constant ion concentration or substantially containing no ion is used as a carrier fluid, means for sending the carrier fluid to the flow path of the sample to be measured is provided, and while the sample to be measured with respect to a change in ion concentration is injected into the carrier fluid, the change in ion concentration of the sample is measured. In such a structure, because it is possible to always compare the ion concentration of the sample with the standard raw liquid, for example, even if a change in ion concentration of the sample to be measured exhibits to be extremely minute during a short period of time and it is difficult to detect the minute change, in a case where the change is continued, when the change in ion concentration becomes more than a certain level after a certain time, the change can be surely detected.
Further, the ion concentration meter also can be structured so as to further comprise means for switching a plurality of sample sources and sending a sample from a selected sample source to the flow path of the sample to be measured. In this structure, the path of the sample to be measured having the above-described two conductivity measuring cells can be disposed for each of the plurality o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ion concentration meter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ion concentration meter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ion concentration meter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3159308

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.