Drug – bio-affecting and body treating compositions – Solid synthetic organic polymer as designated organic active... – Ion exchange resin
Reexamination Certificate
2002-02-11
2003-07-15
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Solid synthetic organic polymer as designated organic active...
Ion exchange resin
C424S078110, C424S078120
Reexamination Certificate
active
06592861
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a disinfectant substance comprising an iodine (impregnated) resin and to a process for the preparation thereof. The iodine/resin disinfectant may be used to sterilize a fluid such as, for example, water, air, as well as fluid exudate secreted at body lesions or traumas such as at cuts, burns, etc.; thus, the disinfectant may be used to devitalize microorganisms (e.g. bacteria, viruses, etc.) which may be present in the fluid (e.g. water, air, pus and the like). The treatment of fluid, such as water or air, with an iodine/resin disinfectant of the present invention may leave behind non-detectable (or acceptable) residual diatomic iodine in the fluid (e.g. water or air). The present invention in particular relates to a demand type broad spectrum resin-polyiodide (e.g. water, air, wound) disinfectant.
BACKGROUND OF THE INVENTION
Diatomic halogen (such as I
2
, Cl
2
, Br
2
, etc.) has traditionally been used to disinfect water. Diatomic chlorine, for example, is a widely exploited disinfectant for controlling or eliminating micro-organisms which may be present in water. A disadvantage of a sterilization regime which exploits diatomic halogen is that the regime may leave behind unacceptable (residual) levels of halogen in the water once sterilization is complete.
An iodine/resin product has, however, been proposed for use as a demand disinfectant, namely a disinfectant wherein iodine is released almost entirely on a demand-action basis. U.S. Pat. Nos. 3,817,860, 3,923,665, 4,238,477 and 4,420,590 teach such a demand disinfectant wherein iodine is the active disinfectant agent; the entire contents of each of these patents is incorporated herein by reference. In accordance with the teachings of these patents the resin product may be used without fear of introducing unacceptable concentrations of diatomic iodine into the water to be sterilized.
U.S. Pat. Nos. 3,817,860 and 3,923,665 teach an iodine/resin demand disinfectant which is the reaction product obtained by contacting a strong base anion exchange resin with a suitable source of triiodide ions. The reaction product is taught as being very stable in the sense that the amount of iodine (e.g. I
2
) released into water from the reaction product is sufficiently low that the water disinfected thereby is immediately ready for use, ie. as drinking water.
In accordance with the teachings of U.S. Pat. Nos. 3,817,860 and 3,923,665 the procedure for preparing the iodine/resin comprises forming a triiodide ion (solution or sludge) by dissolving diatomic iodine in a water solution of a suitable alkali metal halide (e.g. KI, NaI, . . . ). The triiodide solution is in particular taught as being made with a minimal (i.e. minor) water content just sufficient to avoid causing the 12 to crystallize out; see example 1 of U.S. Pat. No. 3,923,665. The resulting (solution) containing the triiodide ion is then contacted with the starting resin (under ambient conditions with respect to temperature (i.e. 25 to 30° C.) and pressure), the triiodide ions exchanging with the anion of the resin (e.g. exchange with chlorine, sulfate, etc.,). The starting resin is taught as being a porous granular strong base anion exchange resin having strongly basic groups in a salt form wherein the anion thereof is exchangeable with triiodide ions. In accordance with the teachings of the above prior art references contacting is continued until the desired amount of triiodide has reacted with the strongly basic groups such that bacterially contaminated water is disinfected when passed through a bed of the obtained resin. After a suitable contact time the iodine/resin is (water) washed to remove water-elutable iodine from the resin product.
However, as indicated in U.S. Pat. No. 4,238,477, it is difficult to use the procedures outlined in the two previously mentioned U.S. patents so as to obtain a homogeneous iodine/resin product containing only triiodide anions and wherein all of the active sites of the resin have been converted to triiodide ions.
Accordingly, U.S. Pat. No. 4,238,477 teaches an alternate process whereby the iodine/resin may be produced. In accordance with this alternate impregnation/contact process, a suitable resin in the iodide form (I
−
) is contacted with water comprising diatomic iodine (I
2
) in solution, the water being recycled between a source of a predetermined amount of diatomic iodine and the resin. The process as taught by this latter patent, however, is a relatively complicated system of pumps, vessels, heaters, etc.; by exploiting a fluidized bed, it in particular may lead to a significant degree of resin bead attrition, i.e. particle breakup.
The processes as taught in U.S. Pat. Nos. 3,817,860 and 3,923,665 are carried out at ambient temperature and ambient pressure conditions. The U.S. Pat. No. 4,238,477 teaches that the contact may occur at a higher temperature such as 60 to 950° C. but that the temperature must be a non-boiling temperature (with respect to water); see column 3 lines 55 to 66.
The above referred to U.S. patents teach the use of the demand disinfectant iodinated resins for treating water; see also U.S. Pat. Nos. 4,298,475 and 4,995,976 which teach water purification devices or systems which exploit iodinated resins. None of these patents teaches the use of the iodinated resins for the purpose of sterilizing air.
It is also known to use iodine tincture for sterilising wounds. The sterilisation effect of iodine tincture is short lived; this means that the tincture must be reapplied on a regular basis to maintain the sterilisation effect. However, such solutions may also damage or destroy the tissue around the wound if applied too liberally and too often. Additionally, the direct application of such solutions to a lesion or wound is usually accompanied by a painful sensation.
SUMMARY OF THE INVENTION
Accordingly it would be advantageous to have an iodine/resin product which has improved characteristics over known or commercially available iodine/resin disinfectant products.
It would also be advantageous to have an alternate process for the preparation of a iodine/resin product (which has improved characteristics over the previously known iodine/resin).
It would be advantageous to have an alternative effective demand disinfectant (e.g. bactericidal) resin and an effective technique for the manufacture thereof. It would, in particular, be advantageous to have an iodine/resin demand disinfectant having a relatively low level of iodine bleed into a fluid (such as water or air) being treated as well as an iodine impregnation process for obtaining such iodinated resin.
It would also be advantageous to have a means whereby lesions, such as for example wounds or burns, may be treated in order to facilitate healing by devitalising microorganisms which may already be in the area of the lesion and further to prevent microorganisms from having access to such lesion (i.e. a dressing), i.e. to inhibit access from any outside biovectors such as for example airborne, waterborne, spital borne, blood borne, particulate borne microorganisms and the like.
It would additionally be advantageous to have a means for inhibiting or preventing microorganisms from contacting predetermined areas of the body such as the skin (e.g. a protective textile for making protective clothing).
In accordance with a general aspect, the present invention provides a process for preparing a demand disinfectant resin, said disinfectant resin being an iodinated strong base anion exchange resin, (i.e. a demand disinfectant-resin comprising polyiodide ions, having a valence of −1, the ions being absorbed or impregnated into the resin as herein described) the process comprising a conversion step, the conversion step comprising contacting a porous strong base anion exchange resin in a salt form with a sufficient amount of an iodine-substance absorbable by the anion exchange resin such that the anion exchange resin absorbs said iodine-substance so as to convert the anion exchange resin to the disinfectant-resin,
Fubara Blessing
Goodwin & Procter LLP
Page Thurman K.
Triosyn Holding Inc.
LandOfFree
Iodinated resin held to a carrier does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Iodinated resin held to a carrier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Iodinated resin held to a carrier will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3069037