Brakes – Internal-resistance motion retarder – Controlled by an operator remote from retarder
Reexamination Certificate
1999-11-16
2001-12-11
Butler, Douglas C. (Department: 3613)
Brakes
Internal-resistance motion retarder
Controlled by an operator remote from retarder
C188S274000, C188S276000, C188S322500
Reexamination Certificate
active
06328144
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an inverted type of vehicular damper (i.e., a damper for a vehicle) with a vehicle height adjusting function which is built into a suspension of a vehicle such as a motor vehicle.
2. Description of the Related Art
An inverted type of vehicular damper is known. This damper is made up of a damper main body, and a damper rod which is inserted into the damper main body from the bottom or lower side thereof so as to be movable up and down (i.e., in the axial direction of the damper). The damper main body is connected to a vehicle body, and the damper rod is connected to an unsprung member so that a damping force against the vibrations of the unsprung member can be obtained.
In case a vehicle height adjusting function is added to this kind of vehicular damper, a vehicle height adjusting cylinder is interposed between the vehicle body and the damper main body. A pressure fluid from a pressure source is supplied to the vehicle height adjusting cylinder. In order to maintain the vehicle height constant even if the load carried on the vehicle varies, the following arrangement is made. Namely, there is provided a vehicle height detection switch made up of a limit switch or the like which is switched on or switched off as a result of a swinging movement of a suspension arm. A signal from the vehicle height detection switch is inputted into a controller. The pressure source for the vehicle height adjusting cylinder and a solenoid valve which is interposed in a pressure fluid supply circuit are controlled by the controller.
In the above-described conventional vehicular damper, however, there are required the pressure source for the vehicle height adjusting cylinder, the solenoid valve, and the controller to control them. As a consequence, the vehicular damper becomes expensive. In addition, since a piping work is required for connection between the pressure source and the vehicle height adjusting cylinder, it takes much time to build the vehicular damper into the vehicle.
In view of the above-described disadvantages of the prior art, the present invention has an object of providing an inverted type of vehicular damper with a vehicle height adjusting function which is low in cost and superior in the ease with which the vehicular damper can be built into the vehicle.
SUMMARY OF THE INVENTION
In order to attain the above and other objects, the present invention is an inverted type of vehicular damper with vehicle height adjusting function comprising: a damper main body; a damper rod which is inserted from a lower side into the damper main body so as to be movable up and down; a pressure casing of a cylindrical shape which is connected to the damper rod and is disposed outside the damper main body so as to be movable up and down such that a pressure chamber for filling therein a pressure medium which varies between a liquid phase and a gaseous phase is formed between the damper main body and the pressure casing; an electric heater for heating and evaporating the pressure medium inside the pressure chamber; and a vehicle height detection switch for detecting a vehicle height. The vehicle height detection switch is used to control electric charging to the electric heater.
When the electric heater is charged with electricity, the pressure medium is heated and evaporated. The pressure casing, i.e., the damper rod, is thus pushed down relative to the damper main body by the vapor pressure of the pressure medium, with the result that the vehicle height increases. In this manner, the pressure casing and the electric heater constitute a thermal-pressure conversion type of pressure source. By integrally building this pressure source into the damper, the ease with which the damper is assembled into the vehicle can be improved.
In addition, by only charging the electric heater with electricity when the vehicle height has become smaller than a detected set height of the vehicle height detection switch, the vehicle height can be maintained at a constant height irrespective of the load which is carried on the vehicle. As a result, no special controller is required any more. In conjunction with the fact that a separate pressure source is not required, the above arrangement can bring about a large reduction in cost.
There is a possibility that the charging of the electric heater with electricity for the left side damper and for the right side damper is separately controlled by a vehicle height detection switch respectively provided on the left side and on the right side. In this arrangement, however, the electric heater of the left side damper or of the right side damper may be wastefully charged with electricity due to a rolling movement of the vehicle while running. In addition, the electric heater of the left side damper or of the right side damper may also be charged with electricity when one of the left wheel or the right wheel of the vehicle, while parking, is in a recess or runs on to a projection such as a curbstone. In such a case, if the vapor pressure of the pressure medium in the pressure casing increases as a result of electric charging to the electric heater, the vapor pressure will not readily lower even if the electric charging to the electric heater is stopped. As a consequence, the driver of the vehicle will have to be forced to drive the vehicle, for some time after starting, in an inclined state in which the vehicle height on one side is higher than that on the other side.
In order to avoid such a disadvantage, it is preferable to provide the vehicle height detection switch on each of left and right sides of the vehicle. The electric heater of each of the left and right dampers is charged with electricity when both left and right vehicle heights are below a detection set height of the vehicle height detection switch.
Further, preferably, a plurality of vehicle height detection switches having different detection set heights are provided, and the vehicular damper further comprises a switch selecting means, wherein charging of electricity to the electric heaters is controlled by a vehicle height detection switch selected by the switch selecting means out of the plurality of vehicle detection switches. In this arrangement, the vehicle height can advantageously be switched by the operation of the switch selecting means.
As the vehicle height detection switch, a limit switch which is switched on and switched off by the swinging of the suspension arm may also be used. In this arrangement, however, a bracket for mounting the limit switch as well as a protector for the limit switch are required, with the result that the number of parts increase and the cost becomes high. By the way, in an inverted type of vehicular damper, there is the following type of damper. Namely, the damper main body contains therein: a lower first spring receiving member disposed on the damper main body; an upper second spring receiving member disposed on the damper rod; a rebound spring interposed between the first spring receiving member and the second spring receiving member, a lower end of the rebound spring being constantly seated on the first spring receiving member; a third spring receiving member which is movable relative to the damper main body and the damper rod and is constantly seated on an upper end of the rebound spring, wherein, when the vehicular damper has extended beyond a predetermined value, the second spring receiving member comes into contact with the third spring receiving member to thereby compress the rebound spring. In such a damper, preferably, the third spring receiving member is at least partially magnetized and a magnetic induction switch is disposed at that portion of the second spring receiving member which comes into contact with the magnetized portion of the third spring receiving member. The magnetic induction switch constitutes the vehicle height detection switch. In this arrangement, since the magnetic induction switch is mounted on the second spring receiving member and since the switch is protected f
Hayakawa Yukio
Nakahara Kiyoshi
Armstrong Westerman Hattori McLeland & Naughton LLP
Butler Douglas C.
Honda Giken Kogyo Kabushiki Kaisha
Torres Melanie
LandOfFree
Inverted type of vehicular damper with vehicle height... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Inverted type of vehicular damper with vehicle height..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inverted type of vehicular damper with vehicle height... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2558495