Inverse corner cube for non-intrusive three axis vibration...

Measuring and testing – Vibration – Sensing apparatus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S001820, C073S596000, C356S152300

Reexamination Certificate

active

06655215

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to vibration sensing. More particularly, the invention relates to a non-intrusive apparatus and method for sensing and measuring vibrations of an object along three orthogonal axes.
2. Description of the Related Art
Vibration measurement systems are known in the art. Vibration sensing devices are often used to detect vibration levels of objects or machinery, particularly rotating machinery such as centrifugal pumps and the like. Changes in vibration levels are often used to detect whether or not such machinery is running properly and, if not, to determine the nature of the problem.
Conventional vibration measurement devices often utilize instruments which determine the motion of a vibrating body by placing a seismic mass, which is mounted on springs, on the body and by measuring the relative displacements of the body and the mass. The measurement is usually made by resistance or capacitance probes. A device which contains these components is called an accelerometer. The accuracy of the measurements of the motions is dependent upon the sensitivity of the measurement technique. One such example is shown in U.S. Pat. No. 4,051,718 which concerns an apparatus for measuring the velocity of low frequency mechanical vibrations. Thus apparatus comprises two springs between which a vibratable mass is secured, two electric coils mechanically coupled to the mass, a permanent magnet core in each coil which is stationary relative to its associated coil, one coil being a measuring coil while the other is a feedback coil; and a current generator having a control input to which the measuring coil is connected while the feedback coil is connected to the generator output, the connection polarities being so selected as to produce negative feedback. Unfortunately, even the most sensitive commercial accelerometers are only able to resolve accelerations of 2 to 3 microgravities (&mgr;G) over a dynamic range of 0 to 100 Hertz. Such sensitivity does not enable sufficiently precise measurements on the optical table to be made and, therefore, the ability to obtain test results utilizing the optical table were reduced to that degree by which undesired vibrations thereon could be determined.
U.S. Pat. No. 4,905,519 describes a vibration sensor having a mirror bonded to a thin metal sheet. The sheet is clamped to the mirror to allow vibration of the mirror along a line which is perpendicular to the plane of the mirror. This vibrating beam and mirror assembly is clamped to a large base, which is placed on an optical table. The unidirectional motion of the mirror relative to the vibrating base and the optical table is measured in order to derive the amplitude and frequency of the vibrations.
U.S. Pat. No. 5,267,014 discloses a non-contacting device for measurement of the orientation in space of a movable object. The device comprises a retro-reflector attached to an object, which retro-reflector has three mutually orthogonal reflective surfaces. A light source projects a beam of light onto a reference mark on the retro-reflector. The beam of light is then reflected back toward the light source, where a semi-transparent mirror deflects a portion of the reflected light beam to a plane where a picture with a pattern caused by the reference mark is formed. Information provided by this picture can be used to determine the orientation in space of the movable object.
U.S. Pat. No. 5,808,743 teaches a laser sensor for measuring target position, velocity, and vibration based on optical feedback induced fluctuations in the operating frequency of a diode laser. The sensor comprises a diode laser which is directed onto a target. The target scatters a small fraction of light back into a laser diode cavity. The optical feedback alters the operating frequency of the laser. A small portion of the light is diverted to an optical frequency discriminator where changes in the laser operating frequency are analyzed and an electronic signal is generated which can be used to determine target position, velocity, and vibration frequency.
U.S. Pat. No. 5,552,883 teaches a noncontact position measurement system using optical sensors. Reflective optical targets are provided on a target object whose position is to be sensed. Light beams are directed toward the optical targets, producing reflected beams. By knowing the position of each projected and reflected beam and the relative locations of the optical sensors and emitters, the set of beam movements with respect to a sensor may be calculated into changes of position of the target along three nonparallel axes.
U.S. Pat. No. 4,125,025 discloses an instrument for measuring the amplitude of vibration of a vibrating object with a high degree of sensitivity. The instrument consists of a first optical system for periodically projecting the image of a grating onto a vibrating object and a second optical system having an optical axis intersecting that of the first optical system in the vicinity of the object, for sharing the image projected on and reflected from the object and recording the shared image on a photographic film. The measurement of the amplitude is obtained in the form of a moire pattern.
Other vibration sensing devices use strain gauges or piezoelectric devices. Strain gauge type vibration sensors employ an electrical resistance that varies with the magnitude of a vibration and converts an electrical resistance change to a corresponding analog voltage output to produce a vibration detection signal. Similarly, piezoelectric devices employ quartz crystals that convert an induced strain to a corresponding analog voltage output. In both types of vibration sensing devices, the changes in the electrical resistance or piezoelectric response provided by the device in response to the vibrations are extremely small, and complicated electrical circuitry must be provided. This circuitry typically includes complex wiring between the object being measured and the sensor, and between the sensor and the device accepting the sensed data. This wiring is costly and is often destructive to the physical integrity of the object being measured.
It would therefore be desirable to devise a non-intrusive method for measuring vibrations of objects. The present invention provides a solution to this problem. According to the invention, a vibration measurement device is provided which has three orthogonal right triangular panels which are congruent to each other, forming a pyramid shape wherein the three 90° angle corners meet at an apex and wherein each triangular panel of the pyramid shape has an outer mirrored surface. The device is preferably attached to an object which is subjected to vibration, such that the apex of the device points in a direction away from the object, and toward a beam splitter. A beam of light may then be projected from a laser, and onto the beam splitter which splits the beam of laser light into one incident beam segment and three reference beam segments. Each of the reference beam segments are directed onto one of three laser light sensors. The incident beam segment is directed onto the apex of the vibration measurement device such that a portion of the incident beam segment is reflected from the mirrored surface of each of the three triangular panels. Each reflected portion of the incident beam segment is then received by a laser light sensor, which is capable of receiving and detecting changes of position of reflected laser light from one of the triangular panels. A light measurement implement is attached to each of the light sensors to measure movements of position of the reflected portions of the incident beam segment on each of the laser light sensors, and compare these movements of position with the reference beam segment directed to the corresponding sensor. The magnitude of vibration of the object can then be determined in each of three orthogonal directions, along three axes, by measuring the difference in movements of position between the reference beam segments and the reflected portion

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inverse corner cube for non-intrusive three axis vibration... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inverse corner cube for non-intrusive three axis vibration..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inverse corner cube for non-intrusive three axis vibration... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3169645

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.