Intumescent polymer compositions

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S445000, C524S582000, C524S100000, C524S145000, C524S403000

Reexamination Certificate

active

06632442

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to intumescent flame retardant polymers and more specifically to intumescent compositions including a matrix polymer, an intumescent composition including an acid catalyst component, a nitrogen source and an ionic phyllosilicate synergist.
BACKGROUND
Flame retardant polymer compositions are well-known in the art. Because of potential environmental and toxicity concerns, there is increasing interest in antimony and halogen-free systems which provide the desired flame retardant properties to a polymeric article. Phosphorous-based compositions are shown, for example, in Publication Nos. WO 99/43747 and WO 97/41173.
The '747 publication entitled
Flame Retardant Polymer Blends
discloses an antimony-free combination of a phosphate-based flame retardant, especially an aryl diphosphate, and an organoclay which are reported to afford synergistic flame retardant properties to polymer blends, especially polyphenylene ether-polystyrene blends and blends of polycarbonates with styrene copolymers such as ABS copolymers. The polyphenylene ether-polystyrene blends free from fluorocarbon additives are preferred according to the disclosure.
The '173 publication entitled
Flame Retardant Composition for Polymers
claims a flame retardant composition, adapted to be mixed with a polymer substrate to confer flame retardancy on the substrate, which comprises: (a) a bicyclic phosphorus flame retardant compound, such as one containing one or more pentaerythritol phosphate alcohol moieties, as exemplified by bis(pentaerythritol) phosphate alcohol carbonate; (b) an intumescent flame retardant compound containing nitrogen and phosphorus, such as melamine phosphate; and (c) a monophosphate ester compound to enhance the charring and processing characteristics of the composition in the polymer substrate, such as a liquid aryl group containing phosphate ester compound. The monophosphate ester compound is typically triphenyl phosphate.
See, also, U.S. Pat. No. 4,454,064 to Halpern et al. which discloses a method for the preparation of pentaerythritol phosphate by mixing pentaerythritol and phosphorous oxychloride in a solvent and heating to a temperature of 75 to 125° C., as well as U.S. Pat. No. 5,237,085 to Telschaw et al. which teaches synthesis of pentaerythritol-based phosphorous heterocycles by reaction of a pentaerythritol polyol with either a trivalent or pentavalent compound using an aryl phosphate solvent at an elevated temperature. A variety of bicyclic phosphate compounds are likewise disclosed in U.S. Pat. No. 3,293,327 to Hechenbleikner et al.
Intumescent flame retardant compositions including 2,6,7-trioxa-1-phosphobicyclo[2.2.2.]octane-4-methanol-1-oxide and a nitrogen compound selected from the group melamine, ammeline, benzoguanidine, guanidine, urea and salts thereof, are reported to be intumescent and readily adapted to flame retard a variety of dissimilar resins including polyolefins, polyvinylaromatic resins, polycarbonates, polyacrylates, polyamides, PVC and blends thereof in U.S. Pat. No. 4,341,694 to Halpern.
U.S. Pat. No. 5,204,393 to Nalepa et al. describes a flame retardant intumescent polyolefin which comprises a combination of ammonium polyphosphate, tris(2-hydroxyethyl) isocyanurate; melamine cyanurate; and a selected silica in an amount from 0.5 percent to an amount equal to one-half the amount by weight of tris(2-hydroxyethyl) isocyanurate.
Intumescent polymer systems generally are believed to function by way of (1) a carbonific or char-forming component which can be the polymer itself, (2) an acid generating component which acts as a catalyst and (3) a spumific or blowing agent, typically a nitrogen source of both ammonia and N
2
. The greater the char volume, the better the insulating, whereas the inner cross-sectional core should be cellular and close celled. In addition, the surface crust should be thick, continuous and impenetrable. See Scharf, D. J.,
Intumescent Fire Retardants for Plastics—A Continuance
(undated). The catalyst or acid generating component is frequently a phosphorous derivative, the function of which is to catalyze dehydration. See Lewin, M.,
Some Aspects of Synergism and Catalysis in FR of Polymeric Materials—An Overview,
Ninth Annual BCC Conference on Flame Retardancy, Business Communications Co., Inc. Norwalk Conn., wherein ammonium polyphosphate is described as the acid generating component and nitrogen source in a polypropylene system where the polymer itself is the carbonific or char-forming agent.
Perhaps more typically, an organic polyol is used as a carbonific and melamine or a melamine derivative as a spumific. See Scharf, D. et al,
Studies on Flame Retardant Intumescent Char: Part I,
Fire Safety Journal 19, pp. 103-117, Elsevier (Ireland, 1992). In this publication, it is reported that titanium dioxide in suitable amounts exerts a reinforcing or synergistic flame retardant effect, whereas stannous oxide is antagonistic. Likewise, it has been reported that zinc and manganese salts can benefit APP performance. See Lewin et al.,
M
n
and Z
n
Compounds as Catalysts of Intumescent Flame Retardancy of Polypropylene,
May, 2000, BCC Conference.
In any polymer system, it is desirable to limit or minimize expensive additives from a cost perspective. In addition, additives can have adverse effects on processing or properties which, of course, becomes more pronounced as the additive load in the system increases. The commercial success of intumescent polymer systems has clearly been limited by the high loading of acid generating component and spumific required to achieve the desired (typically 94V-O) rating in terms of flame resistance.
SUMMARY OF INVENTION
It has been found in accordance with the present invention that certain ionic phyllosilicates, particularly montmorillonoid layered silicates exert a synergistic effect in intumescent polymer compositions making it possible to lower the amount of additives required for a given level of flame resistance, for instance, to maintain a V-O rating under UL-94 standards utilizing otherwise known acid and nitrogen sources. There is thus provided in accordance with a first aspect of the present invention an intumescent, polymer composition including: a matrix polymer composition; an acid catalyst source; a nitrogen source; and an ionic phyllosilicate in an amount of from about 0.1 to about 2 weight percent of the composition, the ionic phyllosilicate having a cationic exchange capacity of at least about 5 meq per 100 g thereof and being capable of synergizing the intumescence of the composition.
In a particularly preferred class of compositions there is provided an intumescent polypropylene composition including: polypropylene; a cyclic organophosphorous acid catalyst source; a nitrogen source selected from the group consisting of amines, ureas, guanidines, guanamines, s-triazines, amino acids, salts thereof including phosphate, phosphonate, phosphinate, borate, cyanurate and sulfate salts, as well as mixtures of the foregoing; and a montmorillonoid ionic phyllosilicate in which the ionic phyllosilicate is present in an amount of from about 0.1 to about 2 weight percent.
In another aspect of the present invention there is provided a flame retardant additive composition for dispersing in a matrix polymer composition to promote intumescence including: an acid catalyst source; a nitrogen source; an ionic phyllosilicate having a cationic exchange capacity of at least about 5 meq per 100 g thereof; and optionally an organic polyol as a carbonific char-promoting agent, wherein the ionic phyllosilicate is present in an amount of from about 0.5 to about 10 percent by weight of the composition.
DETAILED DESCRIPTION
The invention is described in detail below with reference to numerous exemplary, illustrative and preferred embodiments thereof for purposes of description only. Modification to such embodiments within the spirit and scope of the invention, set forth in the appended claims, will be readily apparent to one of skill in the art

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intumescent polymer compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intumescent polymer compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intumescent polymer compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3122244

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.