Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Adhesive outermost layer
Reexamination Certificate
1999-10-04
2002-06-25
Truong, Duc (Department: 1711)
Stock material or miscellaneous articles
Web or sheet containing structurally defined element or...
Adhesive outermost layer
C428S3550RA, C428S402000, C428S403000, C428S407000, C428S920000
Reexamination Certificate
active
06410137
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates broadly to flame retardant materials for use in electromagnetic interference (EMI) applications, and more particularly to an intumescent, pressure-sensitive adhesive composition particularly adapted for use in EMI shielding gaskets, tapes, wraps, and the like for attaching an electrically-conductive foil, fabric, or other sheath or jacket to a foam core, cable, or other substrate.
The operation of electronic devices including televisions, radios, computers, medical instruments, business machines, communications equipment, and the like is attended by the generation of electromagnetic radiation within the electronic circuitry of the equipment. Such radiation often develops as a field or as transients within the radio frequency band of the electromagnetic spectrum, i.e., between about 10 KHz and 10 GHz, and is termed “electromagnetic interference” or “EMI” as being known to interfere with the operation of other proximate electronic devices.
To attenuate EMI effects, shielding having the capability of absorbing and/or reflecting EMI energy may be employed both to confine the EMI energy within a source device, and to insulate that device or other “target” devices from other source devices. Such shielding is provided as a barrier which is inserted between the source and the other devices, and typically is configured as an electrically conductive and grounded housing which encloses the device. As the circuitry of the device generally must remain accessible for servicing or the like, most housings are provided with openable or removable accesses such as doors, hatches, panels, or covers. Between even the flattest of these accesses and its corresponding mating or faying surface, however, there may be present gaps which reduce the efficiency of the shielding by presenting openings through which radiant energy may leak or otherwise pass into or out of the device. Moreover, such gaps represent discontinuities in the surface and ground conductivity of the housing or other shielding, and may even generate a secondary source of EMI radiation by functioning as a form of slot antenna. In this regard, bulk or surface currents induced within the housing develop voltage gradients across any interface gaps in the shielding, which gaps thereby function as antennas which radiate EMI noise. In general, the amplitude of the noise is proportional to the gap length, with the width of the gap having a less appreciable effect.
For filling gaps within mating surfaces of housings and other EMI shielding structures, gaskets and other seals have been proposed both for maintaining electrical continuity across the structure, and for excluding from the interior of the device such contaminates as moisture and dust. Such seals are bonded or mechanically attached to, or press-fit into, one of the mating surfaces, and function to close any interface gaps to establish a continuous conductive path thereacross by conforming under an applied pressure to irregularities between the surfaces. Accordingly, seals intended for EMI shielding applications are specified to be of a construction which not only provides electrical surface conductivity even while under compression, but which also has a resiliency allowing the seals to conform to the size of the gap. The seals additionally must be wear resistant, economical to manufacture, and capability of withstanding repeated compression and relaxation cycles. For further information on specifications for EMI shielding gaskets, reference may be had to Severinsen, J., “Gaskets That Block EMI,” Machine Design, Vol. 47, No. 19, pp. 74-77 (Aug. 7, 1975).
Requirements for typical EMI shielding applications often dictate a low impedance, low profile gasket which is deflectable under normal closure force loads. Other requirements include low cost and a design which provides EMI shielding effectiveness both for the proper operation of the device and, at least in the United States, for compliance with commercial Federal Communication Commission (FCC) EMC standards and other governmental regulations.
A particularly economical gasket construction, which also requires very low closure forces, i.e. less than about 1 lb/inch (0.175 N/mm), is marketed by the Chomerics Division of Parker-Hannifin Corp., Woburn, Mass. under the tradename “Soft-Shield® 4000 Series.” Such construction consists of an electrically-conductive foil, fabric-reinforced foil, or fabric jacket or sheathing which is “cigarette” wrapped over a closed-cell polyurethane or other foam core profile which may be in the form of a generally elongate, strip-type gasket or, alternatively, in the form of a “picture frame” or other large surface area shape. As is described further in U.S. Pat. No. 4,871,477, polyurethane foams generally are produced by the reaction of polyisocyanate and a hydroxyl-functional polyol in the presence of a blowing agent. The blowing agent effects the expansion of the polymer structure into a multiplicity of open or closed cells.
The jacket typically is provided as a highly conductive, i.e., about 1 &OHgr;-sq., nickel-plated nylon fabric or fabric-reinforced aluminum foil. The jacket may be machined wrapped over the core and bonded thereto via an interlayer of an acrylic or other pressure-sensitive adhesive (PSA). Similar gasket constructions are shown in commonly-assigned U.S. Pat. No. 5,028,739 and in U.S. Pat. Nos. 4,857,668; 5,054,635; 5,105,056; and 5,202,536.
Many electronic devices, including PC's and communication equipment, must not only comply with certain FCC requirements, but also must meet be approved under certain Underwriter's Laboratories (UL) standards for flame retardancy. In this regard, if each of the individual components within an electronic device is UL approved, then the device itself does not require separate approval. Ensuring UL approval for each component therefore reduces the cost of compliance for the manufacturer, and ultimately may result in cheaper goods for the consumer. For EMI shielding gaskets, however, such gaskets must be made flame retardant, i.e., achieving a rating of V-0 under UL Std. No. 94, “Tests for Flammability of Plastic Materials for Parts in Devices and Appliances” (1991), without compromising the electrical conductivity necessary for meeting EMI shielding requirements.
In this regard, and particularly with respect to EMI shielding gaskets of the above-described fabric over foam variety, it has long been recognized that foamed polymeric materials are flammable and, in certain circumstances, may present a fire hazard. Owing to their cellular structure, high organic content, and surface area, most foam materials are subject to relatively rapid decomposition upon exposure to fire or high temperatures.
One approach for imparting flame retardancy to fabric over foam gaskets has been to employ the sheathing as a flame resistant protective layer for the foam. Indeed, V-0 rating compliance purportedly has been achieved by sheathing the foam within an electrically-conductive Ni/Cu-plated fabric to which a thermoplastic sheet is hot nipped or otherwise fusion bonding to the underside thereof. Such fabrics, which may be further described in one or more of U.S. Pat. Nos. 4,489,126; 4,531,994; 4,608,104; and/or 4,621,013, have been marketed by Monsanto Co., St. Louis, under the tradename “Flectron® Ni/Cu Polyester Taffeta V0.”
Other fabric over foam gaskets, as is detailed in U.S. Pat. No. 4,857,668, incorporate a supplemental layer or coating applied to the interior surface of the sheath. Such coating may be a flame-retardant urethane formulation which also promotes the adhesion of the sheath to the foam. The coating additionally may function to reduce bleeding of the foam through the fabric which otherwise could compromise the electrical conductivity of the sheath.
In view of the foregoing, it will be appreciated that further improvements in the design of flame retardant, foam core EMI shielding gaskets, as well as sheathing materials therefore, would be well-received by the electronics industry. Espe
Molnar, Jr. John A.
Parker-Hannifin Corporation
Truong Duc
LandOfFree
Intumescent, flame retardant pressure sensitive adhesive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intumescent, flame retardant pressure sensitive adhesive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intumescent, flame retardant pressure sensitive adhesive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2926585