Surgery – Radioactive substance applied to body for therapy – Radioactive substance placed within body
Reexamination Certificate
2001-03-14
2003-07-29
Lacyk, John P. (Department: 3736)
Surgery
Radioactive substance applied to body for therapy
Radioactive substance placed within body
C604S103070
Reexamination Certificate
active
06599230
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to intralumenal devices used to deliver radiation inside a living body. More specifically, the present invention relates to intravascular devices used to deliver radiation inside the vasculature of a patient for therapeutic purposes. Those skilled in the art will recognize the benefits of applying the present invention to similar fields not discussed herein.
BACKGROUND OF THE INVENTION
Intravascular diseases are commonly treated by relatively non-invasive techniques such as percutaneous translumenal angioplasty (PTA) and percutaneous translumenal coronary angioplasty (PTCA). These therapeutic techniques are well-known in the art and typically involve the use of a balloon catheter with a guide wire, possibly in combination with other intravascular devices. A typical balloon catheter has an elongate shaft with a balloon attached to its distal end and a manifold attached to the proximal end. In use, the balloon catheter is advanced over the guide wire such that the balloon is positioned adjacent a restriction in a diseased vessel. The balloon is then inflated and the restriction in the vessel is opened.
Vascular restrictions that have been dilated do not always remain open. For example, the restriction may redevelop over a period of time, a phenomenon commonly referred to as restenosis. Various theories have been developed to explain the cause for restenosis. It is commonly believed that restenosis is caused, at least in part, by cellular proliferation over a period of time to such a degree that a stenosis is reformed in the location of the previously dilated restriction.
Intravascular radiation, including thermal, light and radioactive radiation, has been proposed as a means to prevent or reduce the effects of restenosis. For example, U.S. Pat. No. 4,799,479 to Spears suggests that heating a dilated restriction may prevent gradual restenosis at the dilation site. In addition, U.S. Pat. No. 5,417,653 to Sahota et al. suggests that delivering relatively low energy light, following dilatation of a stenosis, may inhibit restenosis. Furthermore, U.S. Pat. No. 5,199,939 to Dake et al. suggests that intravascular delivery of radioactive radiation may be used to prevent restenosis. While most clinical studies suggest that thermal radiation and light radiation are not significantly effective in reducing restenosis, some clinical studies have indicated that intravascular delivery of radioactive radiation is a promising solution to the restenosis enigma.
Since radioactive radiation prevents restenosis but will not dilate a stenosis, radiation is preferably administered during or after dilatation. European Patent No. 0 688 580 to Verin discloses a device and method for simultaneously dilating a stenosis and delivering radioactive radiation. In particular, Verin '580 discloses balloon dilatation catheter having an open-ended lumen extending therethrough for the delivery of a radioactive guide wire.
One problem associated with the open-ended lumen design is that bodily fluids (e.g., blood) may come into contact with the radioactive guide wire. This may result in contamination of the bodily fluid and require the resterilization or disposal of the radioactive guide wire. To address these issues, U.S. Pat. No. 5,503,613 to Weinberger et al. proposes the use of a separate closed-ended lumen in a balloon catheter. The closed-ended lumen may be used to deliver a radioactive guide wire without the risk of contaminating the blood and without the need to resterilize or dispose of the radiation source.
The closed-ended lumen design also has draw backs. For example, the addition of a separate delivery lumen tends to increase the overall profile of the catheter. An increase in profile is not desirable because it may reduce flow rate of fluid injections into the guide catheter and it may interfere with navigation in small vessels.
Another problem with both the open-ended and closed-ended devices is that radiation must travel through the fluid filled balloon in order to reach the treatment site. While this is not a problem for gamma radiation, it poses a significant problem for beta radiation which does not penetrate as well as gamma radiation. Beta radiation is considered a good candidate for radiation treatment because it is easy to shield and control exposure. In larger vessels (e.g., 0.5 cm or larger), a fluid filled balloon absorbs a significant amount of beta radiation and severely limits exposure to the treatment site.
SUMMARY OF THE INVENTION
The present invention overcomes these problems by providing a radiation delivery system that permits the use of an open-ended delivery lumen without the risk of blood contamination and without the need to dispose of or resterilize the radiation source. In addition, the present invention provides a radiation delivery system that permits beta radiation to be delivered through a balloon without a significant decrease in radiation exposure to the treatment site, even in large vessels.
One embodiment of the present invention may be described as a catheter having an open-ended lumen, a radiation source disposed in the open-ended lumen of the catheter and a closed-end sheath surrounding the radiation source. The closed-end sheath prevents blood and other fluids from coming into contact with the radiation source so that blood is not contaminated and the radiation source may be reused. The catheter may be a balloon catheter and may include a guide wire disposed in the open-ended lumen of the catheter. The open-ended lumen may be a full-length lumen or a partial-length lumen (e.g., a rapid exchange lumen). Preferably, the lumen is centered in the balloon for uniform radiation delivery. The catheter may also include a blood perfusion lumen under the balloon or around the balloon. The open-ended lumen in the catheter may have a reduced diameter adjacent the distal end of the catheter to prevent the radiation source from exiting the lumen. Alternatively, the closed-end sheath may have a ridge which abuts a corresponding restriction in the open-end lumen of the catheter to prevent the radiation source from exiting the lumen.
Another embodiment of the present invention may be described as a method of delivering radiation to a treatment site inside the vasculature of a patient using a the radiation delivery system described above wherein the method includes the steps of (1) inserting the catheter into the vasculature of a patient; (2) inserting the radiation source into the closed-end sheath; (3) inserting the radiation source and the closed-end sheath into the lumen of the catheter such that the radioactive portion is positioned adjacent a treatment site; and (3) exposing the vascular wall to radiation from the radiation source. Alternatively, the sheath may be inserted into the catheter before the radiation source is loaded into the sheath. The method may also include the steps of (4) removing the radiation source from the catheter; and (5) removing the catheter from the patient. The catheter may be inserted into the vasculature over a guide wire and the guide wire may be removed from the catheter prior to exposing the vascular wall to radiation.
Yet another embodiment of the present invention may be described as a method of delivering radiation to a treatment site inside the vasculature of a patient using a gas-filled balloon catheter and a radiation source wherein the method includes the steps of: (1) inserting the catheter into the vasculature such that the balloon is adjacent to a treatment site; (2) inserting the radiation source into the catheter such that the radioactive portion is adjacent to the balloon; (3) inflating the balloon with a gas; and (4) exposing the treatment site to radiation from the radiation source through the gas in the balloon. The balloon may be inflated prior to or subsequent to inserting the radiation source. Preferably beta radiation is used, but other radioisotopes may be employed.
REFERENCES:
patent: 1442051 (1923-01-01), Cummings
patent: 2546761 (1951-03-01), Loftus
pat
Hastings Roger N.
Hektner Thomas R.
Kume Stewart M.
Christensen O'Connor Johnson & Kindness PLLC
Lacyk John P.
Sci-Med Life Systems, Inc.
LandOfFree
Intravascular radiation delivery system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intravascular radiation delivery system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intravascular radiation delivery system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3085238