Intravascular device and method of manufacture and use

Metal working – Method of mechanical manufacture – Assembling or joining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S458000, C029S469500, C604S008000

Reexamination Certificate

active

06622367

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to intravascular devices and methods. Intravascular devices are used to access various areas of the vasculature for a variety of reasons. Such devices are used to deliver and withdraw fluids and to deliver other devices such as stents, angioplasty balloons and thrombolytic devices.
A specific application of the present invention is for treating acute arterial ischemia in areas such as the brain. The devices and methods of the present invention are particularly useful in connection with the devices and methods described in U.S. patent application Ser. No. 09/311,903, filed May 14, 1999 now U.S. Pat. No. 6,295,990 by Lewis and Bolduc which describe devices for treating acute ischemia. The invention may, of course, be used in other locations in the body for any other purpose.
SUMMARY OF THE INVENTION
The present invention is directed to intravascular devices and methods of construction. As an example of a use of the present invention, methods and devices for treating ischemia resulting from the partial or total obstruction of a blood vessel are described. Usually, the obstructions will be high-grade blockages, e.g., those which result in greater than 75% flow reduction, but in some instances they may be of a lower grade, e.g., ulcerated lesions. As used hereinafter, the terms “obstruction,” “occlusion,” and “blockage” will be used generally interchangeably and will refer to both total obstructions where substantially all flow through a blood vessel is stopped as well as to partial obstructions where flow through the blood vessel remains, although at a lower rate than if the obstruction were absent.
Preferred use of the present invention is for the treatment of patients suffering from acute stroke resulting from a sudden, catastrophic blockage of a cerebral artery. The invention may also be used to minimize or prevent ischemia during other conditions which result in blocked points or segments in the cerebral arterial vasculature, such as iatrogenic occlusion of an artery, e.g., during neurosurgery, or to relieve vasospasm induced ischemia. The present invention, however, will also be useful for treating acute blockages in other portions of the vasculature as well as for treating chronic occlusions in the cerebral, cardiac, peripheral, mesenteric and other vasculature. Optionally, the methods of the present invention may be used to facilitate dissolving or removing the primary obstruction responsible for the ischemia, e.g., by drug delivery, mechanical intervention, or the like, while perfusion is maintained to relieve the ischemia.
Methods according to the present invention comprise penetrating a perfusion conduit through the blockage and subsequently pumping an oxygenated medium through the conduit at a rate or pressure sufficient to relieve ischemia downstream from the blockage. The oxygenated medium is preferably blood taken from the patient being treated. In some instances, however, it will be possible to use other oxygenated media, such as perfluorocarbons or other synthetic blood substitutes. In a preferred aspect of the present invention, the pumping step comprises drawing oxygenated blood from the patient, and pumping the blood back through the conduit at a controlled pressure and/or rate, typically a pressure within the range from 50 mmHg to 400 mmHg, preferably at a mean arterial pressure in the range from 50 mmHg to 150 mmHg, and at a rate in the range from 30 cc/min to 360 cc/min, usually from 30 cc/min to 240 cc/min, and preferably from 30 cc/min to 180 cc/min, for the cerebral vasculature. Usually, pressure and flow rate will both be monitored. The blood flow system preferably keeps the pressure at or below 400 mmHg, 350 mmHg, or 300 mmHg. Pressure is preferably monitored using one or more pressure sensing element(s) on the catheter which may be disposed distal and/or proximal to the obstruction where the blood or other oxygenated medium is being released. Flow rate may easily be monitored on the pumping unit in a conventional manner or may be monitored by a separate control unit. Conveniently, the blood may be withdrawn through a sheath which is used for percutaneously introducing the perfusion conduit.
It will usually be desirable to control the pressure and/or flow rate of the oxygenated medium being delivered distally to the occlusion. Usually, the delivered pressure of the oxygenated medium should be maintained below the local peak systolic pressure and/or mean arterial blood pressure of the vasculature at a location proximal to the occlusion. It will generally be undesirable to expose the vasculature distal to the occlusion to a pressure above that to which it has been exposed prior to the occlusion. Pressure control of the delivered oxygenated medium will, of course, depend on the manner in which the medium is being delivered. In instances where the oxygenated medium is blood which is being passively perfused past the occlusion, the delivered pressure will be limited to well below the inlet pressure, which is typically the local pressure in the artery immediately proximal to the occlusion. Pressure control may be necessary, however, when the oxygenated medium or blood is being actively pumped. In such cases, the pump may have a generally continuous (non-pulsatile) output or in some cases may have a pulsatile output, e.g., being pulsed to mimic coronary output. In the case of a continuous pump output, it is preferred that the pressure in the vascular bed immediately distal to the occlusion be maintained below the mean arterial pressure usually being below 150 mmHg, often being below 100 mmHg. In the case of a pulsatile pump output, the peak pressure should be maintained below the peak systolic pressure upstream of the occlusion, typically being below 200 mmHg, usually being below 150 mmHg.
Pressure control of the oxygenated medium being delivered downstream of the occlusion is preferably achieved using a digital or analog feedback control apparatus where the pressure and/or flow output of the pump is regulated based on a measured pressure and/or flow value. The pressure value may be measured directly or indirectly. For example, the pressure downstream of the occlusion may be measured indirectly through the perfusion conduit. A separate pressure lumen may be provided in the perfusion conduit and a pressure measurement transducer located at the proximal end of the conduit. Pressure sensed by a distal port of the pressure measuring conduit will then be transmitted through the conduit to the transducer. Pressure transducers are a preferred pressure sensor for measuring pressure in the vasculature distal to the occlusion. The pressure sensors may be mounted near the distal tip of the perfusion conduit itself or could be mounted on a separate guidewire or other structure which crosses the occlusion with the perfusion conduit. The pressure signals generated by the transducers are transmitted through electrically conductive elements, such as wires, to the proximal end of the perfusion conduit where they are connected to a pressure monitor connected to or integral with the controller. The pump output can then be controlled based on conventional control algorithms, such as proportional control algorithms, derivative control algorithms, integral control algorithms, or combinations thereof. In one embodiment of the present invention, the pressure sensor is spaced from the perfusion outlets so that fluid flow forces do not affect the pressure measurements.
Actual manipulation of the pressure and/or flow provided by a circulating pump can be effected in a variety of ways. In the case of centrifugal pumps, the flow can be measured at the pump output and the pressure can be measured in any of the ways set forth above. Control of both the flow rate and the pressure can be achieved by appropriately changing the pump speed and downstream flow resistance, where the latter can be manipulated using a control valve. Suitable flow control algorithms are well described in the patent and technical literature.
Control o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intravascular device and method of manufacture and use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intravascular device and method of manufacture and use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intravascular device and method of manufacture and use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3091115

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.