Intramuscular stimulation apparatus and method

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S048000, C606S189000, C128S907000

Reexamination Certificate

active

06532390

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for performing intramuscular stimulation.
It has been determined by a number of workers that severe chronic musculoskeletal pain caused by muscles shortening within the body, can be relieved by a technique similar to acupuncture. However, unlike in acupuncture, this method known generally as “intramuscular stimulation” (IMS), involves the insertion of a needle into a region where the nerves connect with the muscle, the motor point region, where the muscle may be readily stimulated or “twitched”.
The stimulation of the muscle is effected by either mechanical manipulation, electrical stimulation or a combination of both.
In many cases the technique necessitates multiple needle insertions into the body of a patient and often at many sites in an affected region. Conventionally, IMS has been performed manually by a physician. This manual technique is very tiring for the physician and has even been known to cause repetitive strain injury. This is because conventional manual stimulation of the muscles is achieved by inserting the needle to the motor point where the muscle may be stimulated so as to cause the muscle to twitch.
Manual stimulation generally involves a reciprocal motion of the needle for a number of seconds. The muscle then relaxes after removal of the needle.
A second method of stimulation is to pass an electric current into the motor point region which causes similar stimulation of the muscle. This can be advantageous as the electric current may stimulate a number of muscles in the area surrounding the needle. Alternatively a combination of manual and electrical IMS has also been found to be effective.
An example of the automation of this method is disclosed in U.S. Pat. No. 5,968,063 and U.S. Pat. No. 6,058,938. In this case one end of a conventional acupuncture or electromyography (EMG) needle is attached to a coupling device which in turn is coupled to the drive mechanism of a gun. In use, the gun is placed against the skin and the second end of the needle is driven from the end of the gun through a nozzle touching the skin and into the patient.
Although the use of automatic devices represents a significant advance upon manual manipulation, there are a number of problems associated with them.
Conventional EMG and acupuncture needles are available in a number of different sizes according to the depth of penetration which should be used. Some problems are encountered in attaching these various different size needles to the coupling device of the gun whilst maintaining the integrity and sterility of the needles. In addition, if the subject requires treatment of different muscular groups within the body, the use of different needles having different lengths is therefore required, necessitating a change of needles between the treatments of different muscle groups.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, we provide a disposable needle applicator unit for attachment to an intramuscular stimulation device, the applicator unit comprising:
a needle having an elongate first end portion for insertion into the body of a subject and a second end portion for coupling with a drive carriage of the intramuscular stimulation device; and
an elongate sheath for enclosing at least the first end portion of the needle, the sheath having a first opening in one end from which the first end portion of the needle may be extended, and a second opening allowing the second end portion of the needle to be coupled with the drive carriage.
The use of a disposable needle applicator unit provides many advantages, particularly in that the sterility of the needle may be more readily assured. The needle applicator unit may be conveniently coupled directly to the drive carriage of the intramuscular stimulation device whilst the sheath provides protection of the portion of the needle that is to be inserted into the body.
As the needle is contained safely within the sheath when the applicator unit is being fitted or attached to the device, the risk of cross-contamination between the patient and physician due to accidental penetration of the physician's skin with the needle, is significantly reduced. The unit therefore provides a further advantage in that, following use, it can be detached from the IMS device and disposed of in its entirety.
Typically the first opening of the sheath will be arranged to tightly enclose the needle so as to precisely guide the first end portion of the needle into the subject in a rectilinear manner with a minimum amount of needle distortion, which is known to cause discomfort in the subject.
Although the second opening of the sheath may be arranged in a number of locations allowing access to the needle, preferably it will take the form of a slot arranged in the side of the sheath such that the second end portion of the needle may be coupled to the drive carriage of the IMS device.
The drive carriage may be arranged such that a coupling element passes through the opening of the sheath to couple with the needle. However, in general the second end portion of the needle will be arranged to project through the second opening of the sheath in order to couple externally to the drive carriage. This may be achieved for example by arranging the second end portion of the needle to be at an angle with respect to the first end portion, for example projecting through the second opening slot.
The first end portion of the needle may then move in the first direction through the first opening of the sheath, as the second end portion moves along the slot whilst projecting from it. In this way a single needle may be used for performing an IMS cycle at different penetration depths upon different muscle groups.
Typically at least the first end portion of the needle will be coated in a friction reducing layer such as PTFE. However, the coating may be removed at the extreme tip of the first end portion where the needle may be sharpened. This allows the tip of the needle to make a good electrical contact with the motor point of the subject.
The needle may be formed as a single component. Preferably however the needle will comprise two or more components. Typically therefore the needle may comprise first and second elongate components arranged axially end to end and coupled such that the first end portion is formed from part of the first component and the second end portion is formed from the second component. The second elongate component may be arranged with an internal bore within which part of the first elongate component may be received.
The two components of the needle may be releasably coupled but preferably they will be coupled in a non-releasable manner. This may be achieved for example with metallic components by crimping them together.
The IMS device may be arranged to have a gripping mechanism to which the applicator unit may be attached. However, preferably the applicator unit will further comprise an attachment element to allow attachment to the IMS device, the attachment element typically comprising one or more projections for coupling with one or more corresponding elements on the intramuscular stimulation device.
Preferably, the applicator unit will also further comprise a contact block arranged at the rear of the sheath with respect to the first opening, wherein in use, the contact block couples with a corresponding component of the intramuscular stimulation device such that the applicator unit is securely attached to it. For example, a plunger attached to the intramuscular stimulation device may apply a force to the block so as to urge the applicator unit in the first direction.
Typically the applicator unit will further comprise a detent arranged to releasably retain the needle such that the first end portion of the needle is enclosed within the sheath when the applicator unit is not attached to the intramuscular stimulation device.
Preferably the applicator unit according to the first aspect of the present invention will be used in conjunction with a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intramuscular stimulation apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intramuscular stimulation apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intramuscular stimulation apparatus and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3014951

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.