Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1998-06-30
2001-09-04
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S424000
Reexamination Certificate
active
06285903
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention generally relates to devices and methods for visualization of elongated devices for therapeutic or diagnostic procedures in a patient's body. In particular, the invention relates to the positioning of the distal end of a catheter or catheter system within a patient's body using radiopaque marker members in conjunction with fluoroscopic or other suitable visualization systems. One specific application of the invention includes visualization of the distal end of an elongated delivery catheter while performing myocardial revascularization, tissue ablation, delivery of an angiogenic agent, or other desired therapy.
Myocardial revascularization typically involves tissue ablation, tissue injury, or formation of one or more channels in a patient's heart wall which defines the heart chamber, particularly the left ventricle. The first trials of the revascularization process were made by Mirhoseini et al.
Lasers in General Surgery
(Williams & Wilkins; 1989), pp. 216-223. Other early disclosures of this procedure are found in an article by Okada et al. in Kobe J. Med. Sci 32, 151-161, October 1986 and in U.S. Pat. No. 4,658,817 (Hardy). Both of these references describe intraoperative revascularization procedures which require the chest wall to be opened and which include formation of the revascularization channels completely through the heart wall, i.e., the epicardium, myocardium and endocardium.
Copending application Ser. No. 08/561,526 filed on Nov. 21, 1995 (Aita et al.), which is incorporated herein in its entirety, describes an intravascular system for myocardial revascularization which is introduced percutaneously into a peripheral artery and advanced through the patient's arterial system into the left ventricle of the patient's heart. The revascularization channels are not usually formed through the entire heart wall but only the endocardium and into the myocardium from within the left ventricle. This procedure eliminates the need of the prior intraoperative procedures to open the chest cavity and to penetrate through the entire heart wall in order to form the channel. While the percutaneous methods and systems for introducing revascularization devices developed by Aita et al. represent a substantial advance, one of the difficulties in revascularizing a patient's left ventricle by means of a percutaneously introduced revascularization system has been accurately visualizing the location of the distal tip of the tissue ablaton or injury device to a desired region of the patient's endocardium and maintaining the placement of the distal end of the device against a desired region of the ventricular wall at a proper angle, i.e., perpendicular or nearly perpendicular to the endocardium, while the heart is beating. The anatomy of human hearts and particularly the relationship of the ascending aorta and the left ventricle can vary considerably from patient to patient. The entry angle from the ascending aorta through the aortic valve into the left ventricle of a human heart does not facilitate the easy access to the free wall of the patient's heart which in substantial part defines the left ventricle.
Prior methods have involved the use of a delivery catheter made from polymeric tubing with a radiopaque material impregnated within the polymer wall, or a symmetric band of radiopaque metal attached to the distal end of the delivery catheter. However, with these devices and methods it can be difficult to determine the precise axial and rotational orientation of the distal end of the delivery catheter due to the symmetries of the marking system when viewed under two dimensional fluoroscopy. This can be cured in part by rotating the fluoroscopy unit to a second viewing angle and visualizing the distal end of the catheter from the second angle. The second viewing angle will sometimes provide enough information for the operating physician to determine the precise orientation of the distal end of the catheter, however, this process is cumbersome and time consuming. Another option is to use a bi-planar fluoroscopic unit to take views from two different perspectives, however, this process is also cumbersome, and the equipment required to do so is expensive.
What has been needed is an improved system and method for visualizing a delivery catheter or delivery catheter system during a percutaneous procedure. In particular, what has been needed is a system and method for fluoroscopic visualization of a catheter that facilitates visualization under two dimensional fluoroscopy without the need to view from more than one plane. The present invention satisfies these and other needs.
SUMMARY OF THE INVENTION
The present invention is directed to devices and methods that incorporate a radiopaque marker member into an intracorporeal device having an elongated shaft with a distal and a proximal end. The radiopaque marker member is disposed upon or within the elongated shaft proximal of the distal end thereof and has a first radiopaque section spaced longitudinally or transversely from a second radiopaque section disposed upon or within the elongated shaft. Such a configuration allows the operator of the intracorporeal catheter to ascertain the orientation of the catheter by fluoroscopic imaging. Another embodiment of the invention incorporates a radiopaque marker member with an intracorporeal device having an elongate shaft with a proximal and distal end and a curvature. The marker member is disposed upon or within the elongate shaft proximal of the distal end and has a curved shape which conforms generally to the curvature of the shaft. The marker member has a first longitudinal section that does not completely surround a circumference of the shaft and a second longitudinal section that does completely surround the circumference of the shaft so as to create a fluoroscopic projection which reveals the orientation of the shaft.
In one preferred embodiment of the present invention, a radiopaque marker member is used in conjunction with a catheter delivery system for percutaneously delivering an elongated therapeutic or diagnostic device into the interior of a patient's heart chamber. The system provides access to a wide region of the patient's endocardium defining at least in part the heart chamber. Such a system is described in detail in copending application Ser. No. 08/962,530 filed Oct. 31, 1997 (Kesten et al.) which is incorporated by reference herein in its entirety.
The catheter delivery system of one embodiment of the invention generally includes a first delivery catheter which has a relatively straight main shaft section and a shaped distal shaft section having a discharge axis selected so that is generally aligned with or parallel to a longitudinal axis of the patient's left ventricle. A second delivery catheter is slidably and rotatably disposed within an inner lumen of the first delivery catheter and provided with a shaped distal section configured to have a discharge axis which is normal or near normal to the patient's endocardial layer which defines in part the left ventricle. A radiopaque marker member may be disposed on or within a distal section of either or both of the delivery catheters.
In one presently preferred embodiment of the invention the first segment of the distal shaft section is at an angle of about 95° to about 160°, preferably about 100° to about 140° with respect to a proximally adjacent second segment of the distal shaft section and the proximally adjacent second segment is at an angle of about 95° to about 160°, preferably about 100° to about 135° with respect to either the proximally adjacent main shaft section or a third segment of the distal shaft section proximally adjacent to the second segment.
In those embodiments where there is a third segment of the distal section, it is at an angle of about angle of about 110° to about 170°, preferably about 120° to about 150° with respect to proximally adjacent main shaft section. The first and second segments should each be about
Javier, Jr. Manuel A.
Kesten Randy J.
Payne Sam G.
Pearce Stephen B.
Rosenthal Michael H.
Carothers Ross M.
Eclipse Surgical Technologies Inc.
Janofsky Ilene L.
Lateef Marvin M.
Lynch Edward J.
LandOfFree
Intracorporeal device with radiopaque marker does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intracorporeal device with radiopaque marker, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intracorporeal device with radiopaque marker will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2457893