Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2000-04-19
2001-05-29
Hofsass, Jeffery (Department: 2736)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S572800, C340S573400
Reexamination Certificate
active
06239705
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to an electronic tracking and locating system, and more specifically, to an improved system whereby a transducer is placed intraorally.
BACKGROUND OF THE INVENTION
Numerous electronic devices have been introduced to track and locate mobile assets, such as for example, trucks, rail cars, and shipping containers. Hundreds of thousands of these assets have been equipped with tracking and locating transducers. The most sophisticated systems permit location of an asset to within a few feet.
More recently, systems to track and locate people have been developed. These tracking and locating devices are useful in managing persons who may be incapable or unable to seek assistance, such as for example, people with Alzheimer's disease, prisoners, children, and military personnel. Additional systems have been proposed to track pets and other animals.
Transmitters and transceivers utilized in locating and tracking humans have been worn as bracelets, sewn into clothing, placed in backpacks, implanted behind the ear of a human, and implanted, generally, under the skin.
One such system utilizes global positioning satellite technology to track and locate inanimate objects, animals, and humans. In one form, a bracelet containing a receiver is worn by a child. Utilizing the known location of three orbiting satellites and the time it takes for a signal to travel between the transducer and each of the three satellites, a three-dimensional position of the transducer is able to be calculated.
In addition to a receiver being worn as a bracelet, systems have been used employing a self-powered self-maintained transceiver, small enough to be implanted under the skin, for locating, tracking and recovering persons in distress such as for example, kidnap victims, people encountering adverse circumstances while in the wilderness, victims of heart attacks, and the like.
Other systems have been used which remain passive until remotely activated. For example, one recovery system employs a transceiver hidden within a motor vehicle and a network of fixed and mobile ground transmitters and receivers to facilitate tracking and recovery of stolen vehicles. The unit is continuously operated as a receiver until it is remotely activated. Once activated, it transmits a radio beacon facilitating tracking and recovery. Ground based fixed and mobile receiver units utilizing field strength measurements and directional receivers then are able to locate the transmitter.
Location and recovery systems have also been developed using timing and triangulation methods, such as that used by the Emergency Position Indicating Radio Beacons (EPIRB). Using the global positioning satellite system, once the user activates a transmitter, the associated satellite network is capable of locating a transmitting EPIRB anywhere on the face of the globe.
Receivers and transceivers worn as jewelry or sewn into clothing are easily found and removed, limiting their usefulness for military, intelligence and personal protection applications. Receivers and transceivers implantable under the skin require an invasive surgical procedure to implant these devices, and additional invasive surgical procedures to repair or remove the device. In addition, surgically implanted devices are susceptible to infection and may be rejected by the body's autoimmune defense system. For these reasons, implanted devices have a low acceptance rate among potential users, particularly, children.
What is needed is a stealthy, non-surgical, biocompatable way to attach a transducer to a living organism such as an animal or human being which can be utilized for tracking and locating a human being or animal.
SUMMARY OF THE INVENTION
In accordance with an aspect of the present invention, an improved stealthy, non-surgical, biocompatable electronic tracking device is provided in which a housing is placed intraorally. The housing contains microcircuitry. The microcircuitry comprises a receiver, a passive mode to active mode activator, a signal decoder for determining positional fix, a transmitter, an antenna, and a power supply. Optionally, an amplifier may be utilized to boost signal strength.
The power supply energizes the receiver. The receiver is in a passive mode until it is activated, to conserve power. Upon receiving a coded activating signal, the positional fix signal decoder is energized, determining a positional fix. The transmitter subsequently transmits through the antenna a position locating signal to be received by a remote locator.
In another embodiment of the present invention, the microcircuitry comprises a receiver, a passive mode to active mode activator, a transmitter, an antenna and a power supply. Optionally, an amplifier may be utilized to boost signal strength. The power supply energizes the receiver. Upon receiving a coded activating signal, the transmitter is energized. The transmitter subsequently transmits through the antenna a homing signal to be received by a remote locator.
In still another embodiment of the present invention, the power supply is replaced by a power storage device. Power is supplied to the storage device by establishing an intraoral galvanic reaction utilizing saliva and differing metals placed within the oral cavity, or alternatively, by collecting and storing RF energy.
The transmitter may be activated by the user or activation may be triggered by an external event, such as for example, a received coded RF signal or coded electromagnetic signal from, for example, a global positioning satellite (“GPS”) signal. The tracking device is preferably capable of being programmed to remain in a dormant or passive mode until receiving an activating signal.
The tracking device can be affixed to the external surface of a tooth or teeth through the use of dental adhesives, bonding agents and/or ligation, or it may be incorporated completely within a dental restoration, endodontically prepared root canal system, a prosthetic tooth or denture.
One advantage of the present invention is that placement of the tracking device intraorally does not require an invasive procedure. In this manner, the device may be stealthy, yet still maintain non-surgical accessibility for maintenance and repair.
Another advantage of the present invention is the ease of removal when the device is meant to be utilized only for a short period of time.
Still another advantage of the present invention is the ability to utilize the galvanic potential of the oral cavity to power the device, eliminating or reducing the need for a separate power supply.
When an internal power supply is utilized, the intra oral location makes for easy accessibility to recharge the power supply without removing the device.
Still another advantage of the present invention is the ability to easily and regularly confirm the operability of the device during routine dental recall visits.
Another advantage of the present invention is the ability to service, replace or remove the locating unit on a regular basis during routine dental visits.
Another advantage of the present invention is the ability of a remote operator to activate and deactivate the transmitting feature of the locating unit, as necessitated by security requirements.
Still another advantage of the present invention is the relative ease of insertion intraorally, with excellent stealth capabilities.
Yet another advantage of the present invention is the ability for a military commander or police commander to know where their troops are at any given moment.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying figures which illustrate, by way of example, the principles of the invention.
REFERENCES:
patent: 3034356 (1962-05-01), Bieganski et al.
patent: 3297021 (1967-01-01), Davis et al.
patent: 3852713 (1974-12-01), Roberts et al.
patent: 4629424 (1986-12-01), Lauks et al.
patent: 4706689 (1987-11-01), Man
patent: 5383915 (1995-01-01), Ada
Hofsass Jeffery
Maria Carmen Santa
McNees Wallace & Nurick
Smolow Mitchell A.
Tang Son
LandOfFree
Intra oral electronic tracking device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Intra oral electronic tracking device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intra oral electronic tracking device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2452700