Intra-frame quantizer selection for video compression

Image analysis – Image compression or coding – Quantization

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S239000

Reexamination Certificate

active

06256423

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to image processing, and, in particular, to video compression.
2. Description of the Related Art
The goal of video compression processing is to encode image data to reduce the number of bits used to represent a sequence of video images while maintaining an acceptable level of quality in the decoded video sequence. This goal is particularly important in certain applications, such as videophone or video conferencing over POTS (plain old telephone service) or ISDN (integrated services digital network) lines, where the existence of limited transmission bandwidth requires careful control over the bit rate, that is, the number of bits used to encode each image in the video sequence. Furthermore, in order to satisfy the transmission and other processing requirements of a video conferencing system, it is often desirable to have a relatively steady flow of bits in the encoded video bitstream.
Achieving a relatively uniform bit rate can be very difficult, especially for video compression algorithms that encode different images within a video sequence using different compression techniques. Depending on the video compression algorithm, images may be designated as the following different types of frames for compression processing:
An intra (I) frame which is encoded using only intra-frame compression techniques,
A predicted (P) frame which is encoded using inter-frame compression techniques based on a previous I or P frame, and which can itself be used as a reference frame to encode one or more other frames,
A bi-directional (B) frame which is encoded using bi-directional inter-frame compression techniques based on a previous I or P frame and a subsequent I or P frame, and which cannot be used to encode another frame, and
A PB frame which corresponds to two images—a P frame and a B frame in between the P frame and the previous I/P frame—that are encoded as a single frame (as in the H.263 video compression algorithm).
Depending on the actual image data to be encoded, these different types of frames typically require different number of bits to encode. For example, I frames typically require the greatest numbers of bits, while B frames typically require the least number of bits.
In a typical transform-based video compression algorithm, a block-based transform, such as a discrete cosine transform (DCT), is applied to blocks of image data corresponding either to pixel values or pixel differences generated, for example, based on a motion-compensated inter-frame differencing scheme. The resulting transform coefficients for each block are then quantized for subsequent encoding (e.g., run-length encoding followed by variable-length encoding). The degree to which the transform coefficients are quantized directly affects both the number of bits used to represent the image data and the quality of the resulting decoded image. This degree of quantization is also referred to as the quantization level, which is often represented by a specified quantizer value that is used to quantize the transform coefficients. In general, higher quantization levels imply fewer bits and lower quality. As such, the quantizer is often used as the primary variable for controlling the tradeoff between bit rate and image quality.
Visual quality of video depends not only on global measures (like pixel signal to noise ratio (PSNR)), but also on how the error is distributed in space and time. Thus, it is important to maintain smoothness of the quantizer (which is closely related to the local distortion) across the picture. In fact, in many scenes, the ideal quantizer selection is a uniform value across the scene. However, such a scheme will not support the moving of bits to a region of interest from less-important regions, and furthermore, will provide very little control over the bits used to encode the picture. Thus, it cannot be used in constant (or near-constant) bit-rate applications (like videophone and video-conferencing over POTS or ISDN).
The other possibility is to vary the quantizer from macroblock-to-macroblock within the constraints of the coding standard being used (for example, in H.263, the quantizer level can change by a value of at most 2 in either direction). Examples of such schemes are given in the H.263+TMN8 (Test Model Near-Term 8) and TMN9 documents (see, e.g., ITU—Telecommunications Standardization Sector, “Video Codec Test Model, Near-Term, Version 9 (TMN9)”, Document Q15-C-15, December 1997). In these schemes, while the frame-level bit target can be accurately met, there are many, possibly large quantizer changes, both spatially and temporally, which show up annoyingly in the moving video as undesirable artifacts.
SUMMARY OF THE INVENTION
As described in the previous section, some video compression algorithms, such as H.263, allow the quantizers to vary from macroblock to macroblock within a frame, although such algorithms often limit the magnitude of change in quantization level between horizontally adjacent macroblocks (e.g., a maximum change of +/−2 levels). In an application with limited bandwidth, this ability to vary the quantization level within a frame enables the video compression processing to judiciously allocate the available number of bits for encoding different regions of a frame differently, for example, allocating more bits (i.e., lower quantization level) to specific regions of interest (ROI). For example, in the classic videophone or video conferencing paradigm in which the foreground consists of a talking head centered on a relatively constant background, it may be advantageous to assign lower quantization levels to the foreground ROI than to the less important background in order to satisfy the bit rate requirements while optimizing video quality.
The present invention is directed to a scheme for selecting quantizers for use in encoding frames having one or more regions of interest. According to one embodiment, the present invention is a method for processing image data, comprising the steps of: (a) identifying one or more sets of image data corresponding to a region of interest in an image; (b) identifying one or more sets of image data corresponding to a transition region in the image located between the region of interest and a least-important region in the image; (c) selecting a first quantization level for each set of image data in the region of interest; (d) selecting a second quantization level for each set of image data in the transition region; (e) selecting a third quantization level for each set of image data in the least-important region; and (f) encoding the image based on the selected first, second, and third quantization levels.


REFERENCES:
patent: 5038389 (1991-08-01), Mizuno
patent: 5650860 (1997-07-01), Uz
patent: 5764803 (1998-06-01), Jacquin et al.
patent: 5969764 (1999-10-01), Sun et al.
patent: 0 676 899 (1995-10-01), None
patent: 0 703 711 (1996-03-01), None
patent: 0 785 689 (1997-07-01), None
Gonzalez et al., “Digital Image Processing”, Addison-Wesley publishing Company, Inc. ISBN 0-201-50803-6, 1992.*
Coene W et al: “A Fast Route for Application of Rate-Distortion Optimal Quantization in an MPEG Video Encoder” Sep. 16, 1996, Proceedings of the International Conference on Image Processing (ICIP), US, New York, IEEE, pp. 825-828 XP000733350ISBN: 0-7803-3259-8 the whole document.
PCT International Search Report corresponding to PCT Application PCT/US99/21834.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intra-frame quantizer selection for video compression does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intra-frame quantizer selection for video compression, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intra-frame quantizer selection for video compression will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2538901

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.