Data processing: software development – installation – and managem – Software program development tool – Translation of code
Reexamination Certificate
1997-06-30
2003-01-28
Courtenay, III, St. John (Department: 2151)
Data processing: software development, installation, and managem
Software program development tool
Translation of code
C717S159000, C717S148000, C717S139000, C709S241000
Reexamination Certificate
active
06513156
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to increasing the execution speed of interpreters and, more specifically, increasing the speed of an interpreter executing a Java™ function utilizing a hybrid of virtual and native machine instructions.
The computer era began back in the early 1950s with the development of the UNIVAC. Today, there are countless numbers of computers and computer platforms. Although the variety of computers is a blessing for users, it is a curse for programmers and application developers who have the unfortunate task of modifying or porting an existing computer program to run on a different computer platform.
One of the goals of high level languages is to provide a portable programming environment such that the computer programs may be easily ported to another computer platform. High level languages such as “C” provide a level of abstraction from the underlying computer architecture and their success is well evidenced from the fact that most computer applications are now written in a high level language.
Portability has been taken to new heights with the advent of World Wide Web (“the Web”) which is an interface protocol for the Internet which allows communication of diverse computer platforms through a graphical interface. Computers communicating over the Web are able to download and execute small applications called applets. Given that applets may be executed on a diverse assortment of computer platforms, the applets are typically executed by a Java™ virtual machine.
The Java™ programming language is an object-oriented high level programming language developed by Sun Microsystemns and designed to be portable enough to be executed on a wide range of computers ranging from small personal computers up to supercomputers. Java programs are compiled into class files which include virtual machine instructions (e.g., bytecodes) for the Java virtual machine. The Java virtual machine is a software emulator of a “generic” computer. An advantage of utilizing virtual machine instructions is the flexibility is achieved since the virtual machine instructions may be run, unmodified, on any computer system that has a virtual machine implementation, making for a truly portable language. Additionally, other programing languages may be compiled into Java virtual machine instructions and executed by a Java virtual machine.
The Java virtual machine is an interpreter executed as an interpreter program (i.e., software). Conventional interpreters decode and execute the virtual machine instructions of an interpreted program one instruction at a time during execution. Compilers, on the other hand, decode source code into native machine instructions prior to execution so that decoding is not performed during execution. Because conventional interpreters decode each instruction before it is executed repeatedly each time the instruction is encountered, execution of interpreted programs is typically quite slower than compiled programs because the native machine instructions of compiled programs can be executed on the native machine or computer system without necessitating decoding.
A known method for increasing the execution speed of Java interpreted programs of virtual machine instructions involves utilizing a just-in-time (JIT) compiler. The JIT compiler compiles an entire Java function just before it is called. However, native code generated by a JIT compiler does not always run faster than code executed by an interpreter. For example, if the interpreter is not spending the majority of its time decoding the Java virtual machine instructions, then compiling the instructions with a JIF compiler may not increase the execution speed. In fact, execution may even be slower utilizing the JIT compiler if the overhead of compiling the instructions is more than the overhead of simply interpreting the instructions.
Another known method for increasing the execution speed of Java interpreted programs of virtual machine instructions utilizes “quick” instructions or bytecodes. The “quick” instructions take advantage of the unassigned bytecodes for the Java virtual machine. A “quick” instruction utilizes an unassigned bytecode to shadow another bytecode. The first time that the shadowed bytecode is encountered, the bytecode is replaced by the “quick” bytecode which is a more efficient implementation of the same operation. Although “quick” instructions have been implemented with good results, their flexibility is limited since the number of unassigned bytecodes is limited (and may decrease as new bytecodes are assigned).
Accordingly, there is a need for new techniques for increasing the execution speed of computer programs that are being interpreted. Additionally, there is a need for new techniques that provide flexibility in the way in which interpreted computer programs are executed.
SUMMARY OF THE INVENTION
In general, embodiments of the present invention provide innovative systems and methods for increasing the execution speed of computer programs executed by an interpreter. A portion of a function is compiled into at least one native machine instruction so that the function includes both virtual and native machine instructions during execution. With the invention, the mechanism for increasing the execution speed of the virtual machine instructions is transparent to the user, the hybrid virtual and native machine instructions may be easily transformed back to the original virtual machine instructions, and the flexibility of compiling only certain portions of a function into native machine instructions allows for better optimization of the execution of the function. Several embodiments of the invention are described below.
In one embodiment, a computer implemented method for increasing the execution speed of virtual machine instructions is provided. Virtual machine instructions for a function are input into a computer system. A portion of the function is compiled into native machine instruction(s) so that the function includes both virtual and native machine instructions. A virtual machine instruction of the function may be overwritten with a new virtual machine instruction that specifies the execution of native machine instructions that were compiled from a sequence of virtual machine instructions beginning with the overwritten virtual machine instruction of the function. In preferred embodiments, the virtual machine instructions are Java virtual machine instructions.
In another embodiment, a computer implemented method for increasing the execution speed of virtual machine instructions is provided. Java virtual machine instructions for a function are input into a computer system. A portion of the function is compiled into native machine instruction(s). A copy of a selected virtual machine instruction at a beginning of the portion of the function is stored and a back pointer to a location of the selected virtual machine instruction is also stored. The selected virtual machine instruction is overwritten with a new virtual machine instruction that specifies execution of the native machine instructions so that the function includes both virtual and native machine instructions. The new virtual machine instruction may include a pointer to a data block in which is stored the native machine instructions, the copy of the selected virtual machine instruction, and the back pointer. Additionally, the original virtual machine instructions that were input may be generated by storing the copy of the selected virtual machine instruction stored in the data block at the location specified by the back pointer.
In another embodiment, a computer implemented method of generating hybrid virtual and native machine instructions is provided. A sequence of virtual machine instructions for a function is input into a computer system. A virtual machine instruction of the sequence of virtual machine instructions is selected and the selected virtual machine instruction is overwritten with a new virtual machine instruction that specifies one or more native machine instructions. The new virtual machine instruc
Bak Lars
Griesemer Robert
Beyer Weaver & Thomas LLP
Bullock, Jr. Lewis A.
Courtenay III St. John
Sun Microsystems Inc.
LandOfFree
Interpreting functions utilizing a hybrid of virtual and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interpreting functions utilizing a hybrid of virtual and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interpreting functions utilizing a hybrid of virtual and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3033793