Internet service provider (ISP) finder

Multiplex communications – Data flow congestion prevention or control – Control of data admission to the network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S232000, C370S233000, C379S112010, C379S133000

Reexamination Certificate

active

06351453

ABSTRACT:

TECHNICAL FIELD
The present invention relates to methods and systems for analyzing call specific data records for traffic through a telecommunication network in order to identify specific types of called parties, particularly ISPs.
ACRONYMS
The written description uses a large number of acronyms to refer to various services, messages and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Address Complete Message (ACM)
Asynchronous Digital Subscriber Line (ADSL)
ANswer Message (ANM)
Application Service Part (ASP)
Automatic Message Accounting (AMA)
Automatic Number Identification (ANI)
BellCore AMA Format (BAF)
Carrier Access Billing System (CABS)
Call Detail Record (CDR)
Carrier Identification Code (CIC)
Centi-Call Second (CCS)
Central Office (CO)
Competitive Local Exchange Carrier (CLEC)
Common Channel Interoffice Signaling (CCIS)
Common Language Location Identifier (CLLI)
Comma Separated Values (CSV)
Customer Record Information System (CRIS)
Cyclic Redundancy Code (CRC)
Destination Point Code (DPC)
End Office (EO)
Executive Information System (EIS)
Fill In Signal Unit (FISU)
First-In, First-Out (FIFO)
Global Title Translation (GTT)
Graphical User Interface (GUI)
Initial Address Message (IAM)
Integrated Service Control Point (ISCP)
Integrated Services Digital Network (ISDN)
ISDN User Part (ISDN-UP or ISUP)
Inter-exchange Carrier (IXC)
Internet Service Provider (ISP)
Landing Zone (LZ)
Line Identification Data Base (LIDB)
Link Service Signaling Unit (LSSU)
Local Area Network (LAN)
Local Exchange Carrier (LEC)
Loop Maintenance Operations Systems (LMOS)
Message Processing Server (MPS)
Message Signaling Unit (MSU)
Message Transfer Part (MTP)
Multi-Dimensional DataBase (MDDB)
Numbering Plan Area (NPA)
Office Equipment (OE)
Online Analytical Processing (OLAP)
Origination Point Code (OPC)
Operations, Maintenance Application Part (OMAP)
Percentage Internet Usage (PIU)
Personal Computer (PC)
Public Switching Telephone Network (PSTN)
Release Complete Message (RLC)
Release Message (REL)
Revenue Accounting Office (RAO)
Service Control Point (SCP)
Service Switching Point (SSP)
Signaling Link Selection (SLC)
Signaling System
7
(SS7)
Signaling Point (SP)
Signaling Transfer Point (STP)
Structured Query Language (SQL)
Transaction Capabilities Applications Part (TCAP)
Wide Area Network (WAN)
BACKGROUND ART
Rapid changes and increases in demand for telecommunication services increase the pressures for cost effective engineering and upgrading of the telephone network. The demand for traditional telephone service continues to increase, but at a steady and readily predictable pace. Several newer types of traffic through the telephone network, however, are increasing at an exponential rate and impose new traffic patterns that exacerbate difficulties in meeting the new traffic demands. The most significant and burdensome of these new types of traffic relates to calls through the telephone network to Internet Service Providers (ISPs), to allow callers to access the Internet.
The most common form of Internet access relies on modems and analog telephone network connections. A modem of this type modulates data from a personal computer (PC) for transmission in the voice telephone band over a telephone connection to the Internet Service Provider (ISP) and demodulates data signals received from the ISP over such a link. The analog telephone modem operates at one subscriber premises end of a voice grade line to transmit and receive signals over the line and through the telephone switch network to and from another similar line and modem in communication with an ISP's host equipment.
To access the Internet, the user activates her PC and modem to dial a number for the ISP. The telephone network switches the call through to a line going to a modem pool operated by the ISP. Once connected through the telephone network, the user logs on, and the ISP's equipment provides communications over the worldwide packet switched network now commonly known as the Internet. This telephone-based operation provides the voice grade analog modem a unique power, the necessary connections for Internet access are virtually ubiquitous. Such modems allow users to call in from virtually any telephone line or wireless telephone (e.g. cellular) almost anywhere in the world.
However, the calling patterns for this type of data communications, particularly Internet access, are radically different from those of normal voice traffic. The sudden increase in popularity of access to the Internet and the difference in call-in traffic patterns have radically changed the loading placed on the telephone network.
Normal voice telephone calls tend to occur at random times, and the network typically routes the majority of such calls to random destinations. Also, the average hold times for such calls tend to be short, e.g. three minutes or less. By contrast, Internet traffic tends to have severe peak traffic times during any given twenty-four hour period, e.g. from 8:00 PM to 11:00 PM. Also, the network must route Internet access calls to a very small number of destinations, i.e. to the lines for modem pools operated by Internet Service Providers (ISPs). Instead of many parties calling each other randomly, many callers are all calling in to a limited number of service providers. Finally, hold times for Internet calls can last for hours. Some Internet users access the Internet when they sit down at their desks and leave the call connections up until they decide to turn their computers off, e.g. at the end of their day. If they leave their computers on all the time, the connections to the ISPs may stay up for days. These Internet traffic patterns add incredibly heavy traffic loads to the telephone network and tend to concentrate those loads in specific offices providing service to the ISPs.
The local exchange carriers (LECs) are considering a number of different options for relieving the congestion caused by Internet access traffic. Using existing technologies, these options include deploying more switches and trunk circuits and designing the connections of switches and trunks to the ISPs and their high-end users to minimize call switching and/or trunk congestion. For example, if there is a heavy concentration of ISP bound calls from a mid-town end office switch to an end office in the suburbs that serves the ISP, the LEC might install additional direct trunks between those offices to reduce the need for overflow routing through a tandem office. Within the mid-town office switch, the LEC might connect the high-end users that call the particular ISP to the same switch module that connects to the new direct trunks to the suburban end office, in order to reduce the inter-module switching load within the mid-town switch. Similarly, in the suburban office, the LEC would connect the new trunks to the same switch module that serves the ISP.
The carriers also are considering and experimenting with a number of options to off-load the Internet access traffic from the voice telephone network. Such options range from deployment of dedicated trunks to the modem pools of the ISPs to deployment of advanced digital loop carrier systems that can recognize data calls and switch such calls over to some link directly to a fast packet network. Other technologies, such as Asynchronous Digital Subscriber Line (ADSL) networks, provide a totally separate logical path for the data communications.
The various strategies intended to address the increasing traffic demands of Internet access, such as adding end offices, deploying specialized switching modules, installing ADSL networks, adding trunks, deploying more tandem offices and the like, all require considerable expense by the carriers. Accurate engineering, to minimize cost and yet reduce congestion and provide effective service to the various customers, becomes ever more essential. To provide effective engineering, it is necessary that the carrier understand the traffic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Internet service provider (ISP) finder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Internet service provider (ISP) finder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internet service provider (ISP) finder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2968243

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.