Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching
Reexamination Certificate
1999-12-10
2001-02-06
Olms, Douglas W. (Department: 2732)
Multiplex communications
Pathfinding or routing
Combined circuit switching and packet switching
C370S389000, C370S392000
Reexamination Certificate
active
06185204
ABSTRACT:
TECHNICAL FIELD
The present invention is related to telephone systems and interlinked networks. More particularly, the invention relates to methods and system structures for providing PCS and cellular service and other telephone service over a public packet data network such as the Internet and to providing such services partly through the public telecommunications system including over existing telephone links.
BACKGROUND ART
Attention recently has been directed to implementing voice telephone service over the worldwide network now commonly known as the Internet. The Internet had its genesis in U.S. Government programs funded by the Advanced Research Projects Agency (ARPA). That research made possible national internetworked communication systems. This work resulted in the development of network standards as well as a set of conventions, known as protocols, for interconnecting networks and routing information. These protocols are commonly referred to as TCP/IP. The TCP/IP protocols were originally developed for use only through ARPANET and have subsequently become widely used in the industry. TCP/IP is flexible and robust. TCP takes care of the integrity and IP moves the data.
Internet provides two broad types of services: connectionless packet delivery service and reliable stream transport service. The Internet basically comprises several large computer networks joined together over high-speed data links ranging from ISDN to T1, T3,FDDI, SONET, SMDS, OT1, etc. The most prominent of these national nets are MILNET (Military Network), NSFNET (National Science Foundation NETwork), and CREN (Corporation for Research and Educational Networking). In 1995, the Government Accounting Office (GAO) reported that the Internet linked 59,000 networks, 2.2 million computers and 15 million users in 92 countries. It is presently estimated that the number of Internet users doubles approximately annually.
In simplified fashion the Internet may be viewed as a series of routers connected together with computers connected to the routers. The Information Providers (IPs) constitute the end systems which collect and market the information through their own servers. Access providers are companies such as UUNET, PSI, MCI and SPRINT which transport the information. Such companies market the usage of their networks.
Referring to
FIG. 5
, there is shown a simplified diagram of the Internet and various types of systems typically connected thereto. Generally speaking the Internet consists of Autonomous Systems (AS) type packet data networks which may be owned and operated by Internet Service Providers (ISPs) such as PSI, UUNET, MCI, SPRINT, etc. Three such AS/ISPs are shown in
FIG. 5
at
310
,
312
and
314
. The Autonomous Systems (ASs) are linked by Inter-AS Connections
311
,
313
and
315
. Information Providers (IPs)
316
and
318
, such as America Online (AOL) and Compuserve, are connected to the Internet via high speed lines
320
and
322
, such as T1/T3 and the like. Information Providers generally do not have their own Internet based Autonomous Systems but have or use Dial-Up Networks such as SprintNet (X.25), DATAPAC and TYMNET.
By way of current illustration, MCI is both an ISP and an IP, SPRINT is an ISP, and MicroSoft (MSN) is an IP using UUNET as an ISP. Other information providers, such as universities, are indicated in exemplary fashion at
324
and are connected to the AS/ISPs via the same type connections here illustrated as T1 lines
326
. Corporate Local Area Networks (LANs), such as those illustrated in
328
and
330
, are connected through routers
332
and
334
and high speed data links such as T1 lines
336
and
338
. Laptop computers
340
and
342
are representative of computers connected to the Internet via the public switched telephone network (PSTN) and are shown connected to the AS/ISPs via dial up links
344
and
346
.
In the addressing scheme of the Internet an address comprises four numbers separated by dots. An example would be 164.109.211.237. This is called the Internet Protocol address or IP address. Each machine on the Internet has a unique number assigned to it which constitutes one of these four numbers. In the address the leftmost number has the greatest weight. By analogy this would correspond to the ZIP code in a mailing address. At times the first two numbers constitute this portion of the address indicating a network or a locale. That network is connected to the last router in the transport path. In differentiating between two computers in the same destination network only the last number field changes. In such an example the next number field
211
identifies the destination router. When the packet bearing the destination address leaves the source router it examines the first two numbers in a matrix table to determine how many hops are the minimum to get to the destination. It then sends the packet to the next router as determined from that table and the procedure is repeated. Each router has a database table that finds the information automatically. This continues until the packet arrives at the destination computer. The separate packets that constitute a message may not travel the same path depending on traffic load. However they all reach the same destination and are assembled in their original order in a connectionless fashion. This is in contrast to connection oriented modes such as frame relay and ATM or voice.
It would be difficult for most people to remember the four separate numbers (sometimes having ten or more digits) comprising each numeric address. In addition numeric IP addresses occasionally change making it even more of a problem for people to keep track of them.
The Domain Name System (DNS) was developed to provide some relief from these problems. In the DNS system words, which are more easily remembered, are used instead of numbers.
An example of a textual Domain Name is Evoit@HUT.MB.COM. Each of the names separated by a dot is called a domain. The significance of each of the domains is the reverse of that of the numeric IP address. In the numeric IP address the most significant numbers were on the left and the least on the right. The textual Domain Name System begins with the least significant on the left and proceeds to the most significant on the right.
The top-level domains, those of the most general significance, are as follows:
1. COM A commercial operation
2. EDU A university, college or other educational institution
3. GOV A government organization
4. MIL A military site
5. ORG Any organization that does not fit into any of the preceding
6. NET A network
There are now two-letter domains, each denoting a different country, which are atop the above original domain names. An address ending in “COM.AU,” for example, would be a commercial operation in Australia. Over a hundred different countries are now connected to the Internet so the list of two-letter country codes is long and getting longer. Computers associated with the Internet called nameservers convert textual domain names into numeric IP addresses.
One or more companies have recently developed software for use on personal computers to permit two-way transfer of real-time voice information via an Internet data link between two personal computers. In one of the directions, the sending computer converts voice signals from analog to digital format. The software facilitates data compression down to a rate compatible with modem communication via a POTS telephone line, in some cases as low as 2.4 kbits/s. The software also facilitates encapsulation of the digitized and compressed voice data into the TCP/IP protocol, with appropriate addressing to permit communication via the Internet. At the receiving end, the computer and software reverse the process to recover the analog voice information for presentation to the other party. Such programs permit telephone-like communication between Internet users registered with Internet Phone Servers.
The book “Mastering the Internet”, Glee Cady and Pat McGregor, SYBEX Inc., Alameda, Calif., 1994, ISBN 94-69309, very briefly describ
Bell Atlantic Network Services Inc.
McDermott & Will & Emery
Olms Douglas W.
Vanderpuye Ken
LandOfFree
Internet phone to PSTN cellular/PCS system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Internet phone to PSTN cellular/PCS system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internet phone to PSTN cellular/PCS system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575567