Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing
Reexamination Certificate
2000-03-11
2004-11-16
Meky, Moustafa M. (Department: 2157)
Electrical computers and digital processing systems: multicomput
Computer-to-computer data routing
C709S203000, C709S217000
Reexamination Certificate
active
06820132
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to Internet communications systems, and more particularly to an asymmetrical hybrid satellite-terrestrial communications network for such systems.
2. Background and Prior Art
Abbreviations used below
ATM—asynchronous transfer mode
BGP—border gateway protocol
CIR—committed information rate
DLCI—data link connection identifier
EIR—excess information rate
EISP—Europe-based Internet service provider
ERTR—Europe-based Internet service provider US gateway
router
FRS—frame relay switch
IP—Internet protocol
IPX—a Novell network protocol
ISP—Internet service provider
LM—link management
NAP—network access point
POP—point of presence
PVC—permanent virtual circuit
REP—reply packet
REQ—request packet
SCPC—single channel per carrier
URTR—router of US Internet service provider cooperating with Europe-based Internet service provider router
USISP—US Internet service provider
VSAT—very small aperture terminal
The Internet is a collection of independent computer networks, which communicate with each other using standard communication protocols. By using such standard protocols, any user on any network can access any server on any other network on the Internet, subject to security considerations.
Entry into the Internet is furnished by Internet Service Providers (ISPs). ISPs operate networks that connect with each other at network access points (NAPs).
A typical network includes communication links and routing devices known as routers. A router includes tables which correlate addresses with destination information. Routing protocols are used to keep the information in the routing tables up to date to ensure that the information tables contain accurate information. Information is transmitted between NAPs in the form of individual data packets. Each packet contains an embedded source and destination address to which the packet is routed across the networks.
A typical Internet transaction involves a small amount of data in the form of a request from a user or client, and a much larger amount of data in the form of a response from the server of the content provider containing the requested information. The traffic imbalance represents a substantial waste of bandwidth in an asymmetric terrestrial link.
Many Internet users are limited to voice grade terrestrial communication lines with dial-up access, in which bandwidth is limited to 28 Kbps and 56 Kbps. Where faster data rates are available, they are very expensive. ISPs have been known to undersize their banks of telephone modems to reduce costs, and oversubscribe their service to increase revenues. This results in the inability of users to connect to the ISP during peak hours of usage and the tendency of users to stay connected longer once access is gained, for fear of not being able to get back on line, resulting in more Internet congestion.
One situation in which unequal data streams flow between requesters and Internet servers is that of Internet usage, called Web traffic, by users in Europe. Today in a nominal European country, 25% of requests on the Web are for content from within the country, 25% are for content that resides in the rest of Europe, and the remaining 50% is for content from the rest of the world, predominantly the United States. Most of this international traffic is routed via a Internet exchange point such as MAE-East, physically located near Washington D.C. When a user in Europe requests a Web page or file located in the United States, a small amount of data flows to the United States in the form of the request, and a relatively large data stream constituting the responses to request flows from the United States to Europe. Currently, the amount of data transmitted to Europe is three to five times that transmitted from Europe to the United States.
For purposes of the present description, remote ISPs are described as not being conveniently connected to the Internet. This refers to the condition of there being some inherent problem with terrestrial backbone infrastructure to meet the explosive growth of Internet traffic. United States ISPs in the present example are referred to as high volume ISPs in that their terrestrial backbone infrastructure provides capacity, connectivity and peering for Internet traffic.
The present system may in fact end up being used between infrastructures that are each rather well developed. This terminology is used simply as a context through which the present invention is described.
It is desirable to provide a system which maximizes use of available bandwidth, provides for asymmetrical use of satellite and terrestrial links and efficiently handle packets of data. The concept of asymmetrical bandwidth in a hybrid communications network using satellite and terrestrial links is known. In a known prior art system, a desktop client launches an Internet application on an IPX network. The client connects to an Internet gateway to a server using technology providing traffic management and asymmetric routing. The user sends a request to a control center over a telephone connection with the return IP address of the customer's satellite dish. The response to the customers request is beamed to one of the satellites which beams the response back to the customer dish. The dish forwards a response to a server to an IP gateway which sends the response back to the desktop via IPX. This system meets its intended objectives. However, the present invention is intended to meet different and further objectives.
SUMMARY OF THE INVENTION
It is therefore a general objective of the present invention to provide an asymmetric, hybrid terrestrial-satellite Internet communications network and method in which use of available bandwidth is maximized and dynamically configured across points along the Internet backbone.
It is also an objective of the present invention to provide a system and method of the type described in which additional bandwidth may be provided temporarily at a selected point or points in the network either by a preselected pattern or in a condition-responsive manner.
It is a more specific objective of the present invention to provide a system and method of the type described in which additional bandwidth may be provided temporarily at a selected point or points in the network in response to demand.
It is also an objective of the present invention to provide a system and method of the type described in which permanent virtual circuits are created for guaranteeing bandwidth to a user.
It is also an additional objective of the present invention to provide a system and method of the type described in which permanent virtual circuits are created to allow provision of additional bandwidth to a user when excess system capacity exists.
It is also a further objective of the present invention to provide a system and method of the type described in which permanent virtual circuits are created for the purpose of broadcast or multicast.
It is also an objective of the present invention to provide a system and method of the type described in which scalability is provided by assigning more permanent virtual circuits to a network or by assigning more bandwidth to a specific permanent virtual circuit, whereby a user network may be readily upgraded.
It is an additional objective of the present invention to provide a system and method of the described in which a border gateway protocol is used to exchange data to and from the Internet.
It is another objective of the present invention to provide a system and method of the type described in which redundant or alternative paths are provided should a link become disabled.
It is also another objective of the present invention to provide a system and method of the described in which a border gateway protocol (BGP) is used to control routing of data in the hybrid environment to aid in providing redundancy as well as normal routing in the hybrid environment.
It is still another objective of the present invention to provide a system and method of the type described in which terrestrial routing between
Jacobson Thomas
Liebowitz Burt H.
Puente David S.
Karambelas & Associates
Loral CyberStar, Inc.
Meky Moustafa M.
LandOfFree
Internet communication system and method with asymmetric... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Internet communication system and method with asymmetric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internet communication system and method with asymmetric... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3297312