Internet based vehicle data communication system

Telecommunications – Receiver or analog modulated signal frequency converter – Combined with diverse art device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S099000, C455S456500, C455S066100, C455S012100, C340S989000, C370S400000, C701S029000, C701S033000

Reexamination Certificate

active

06751452

ABSTRACT:

TECHNICAL FIELD
The present invention relates to data communications between motor vehicle electronics and a website, capable of real-time Class 2 two-way data communication and including integrated global positioning system information.
BACKGROUND OF THE INVENTION
Motor vehicle electronics data are used to monitor and evaluate operational characteristics of motor vehicle systems. This is an especially important facet of new model testing prior to public introduction. Typically, motor vehicle testing is conducted at a proving ground, but frequently testing is also performed on public highways. The data accumulated from the testing is typically stored in a data recording device or data recording media and manually delivered to a diagnostic station for evaluation. Under this mode of testing, after the data has been analyzed, if adjustments to the electronics of the motor vehicle are needed, a technician must make these adjustments physically at the motor vehicle. In view of the time and labor constraints inherent with the typical motor vehicle testing regimen, it would be very desirable if two-way data could somehow be wirelessly transmitted between the motor vehicle and the diagnostic station.
In the prior art it is known that motor vehicle electronics monitoring and programming can be accomplished using wireless communication, for example as disclosed by U.S. Pat. Nos. 4,804,937 and 5,442,553. However, it remains a problem in the art that wireless communication systems which could be used for motor vehicle two-way wireless communication, such as for example radio and cellular phones, are limited either in terms of range or coverage. Another problem that has yet to be overcome is the need to have an expensive diagnostic station at the monitoring end if successful two-way data communication is to be accomplished in real time.
In overcoming the aforesaid problems, two emerging technologies are of interest: the internet and communication satellites.
The internet is a now ubiquitous communication system for inter-computer data transfer. The world wide web (web) is an aspect of the internet, wherein a website, hosted by an internet service provider (ISP), is accessible to computer users who have access to the web by entering a universal resource locator (URL), most commonly represented by a “domain name”, as for example “http://www.PatentApplication.com”. Some websites are open to the general public, while other websites or portions of websites are access restricted by “permissions” requiring entry of a user password and/or user name to gain access. Computer users who have access to the web can communicate back and forth substantially instantaneously using electronic data transfer, commonly known as “e-mail”.
Low earth orbit (LEO) communication satellites are now also well established; one such system in this regard is known as “ORBCOMM”. The ORBCOMM system uses a constellation of LEO communication satellites which provide world-wide wireless coverage. The communication satellites are capable of sending and receiving two-way alphanumeric data packets, similar to two-way paging and e-mail. Three main components of the ORBCOMM system are: a space segment, a ground segment and subscriber communicators. The space segment is composed of a constellation of (presently about 35) LEO communication satellites. The communication satellites are “orbiting packet routers” ideally suited to “grab” small data packets from sensors in vehicles, containers, vessels, or remote fixed sites, and relay the packets through a tracking Earth station and then to a control center. The ground segment is composed of gateway control centers (GCCs), gateway Earth stations (GESs) and a network control station (NCS). The GCCs provide interfacing for the subscriber communicators, leased phone lines, dial-up modems, public or private networks, and e-mail networks, including the internet. The GESs provide a communication link between the GCCs and the constellation of LEO communication satellites, including transmitting and receiving transmissions from the LEO communication satellites and transmitting and receiving transmissions from the GCCs and the NCC. The NCC manages the ORBCOMM network elements. The subscriber communicators include, for example, VHF electronics and an antenna design for integration into small packages which may typically include an alphanumeric keypad and display. More information is available concerning the ORBCOMM system at the ORBCOMM website: http://www.orbcomm.com.
SUMMARY OF THE INVENTION
The present invention is an internet based two-way data communication system for interrogating and programming the electronics of motor vehicles, with global positioning system (GPS) and real-time class 2 communication capabilities.
The vehicle data communication system according to the present invention includes a vehicle communications package (VCP) located aboard each subject motor vehicle which is electronically interfaced with selected electronics of the respective motor vehicle and which provides wireless reception of GPS signals and reception and transmission of Class 2 data with respect to communication satellites, and further includes a website having a predetermined internet URL. Wireless communication between the website and the VCP is provided via a communication satellite provider having an internet interface.
The VCP preferably includes: a subscriber communicator for providing satellite communication, as for example a Panasonic KX7101 communication module, including a GPS data reception antenna and a communication satellites receive/transmit antenna; an interface board for providing I/O interfacing with the vehicle electronics via a Class 2 interface; and a vehicle serial interface (VSI).
The website has a predetermined URL and is linked to the web on a server of an ISP hosting service or on a private server connected to the internet. The website is accessible by a user using any computer, located anywhere and having internet access, simply by entering the website URL and the user's pre-established password/user name permissions. The website provides a user selectable display for organizing data to be sent to the one or more motor vehicles and received back therefrom. For example, the website may include: mapping detail including vehicle location, current vehicle status, icons specific to predetermined vehicle related matters, vehicle history, quick search and position query, command center functionality, control console functionality, and sending and receiving Class 2 messages. The user accomplishes the Class 2 communication and function selection using a pointer (as for example a mouse) a keypad and a computer screen (display).
In operation, a VCP is respectively installed in each motor vehicle of a selected number of motor vehicles via a Class 2 interface to, for example, the vehicle Class 2 (J1850 protocol) bus and the vehicle interface connection. A user accesses the website using a computer connected to the internet, and then reads data displayed on the computer screen. The user then enters an access code to gain access to one or more of the VCPs, enters any desired commands, and then sends the commands. The commands are sent over the internet to the station URL address of a receiving station of a communication satellite provider, and the communication satellite provider then transmits the commands to the communication satellites. The communication satellites, in turn, re-transmit the commands to the Earth, which commands are thereby received by the VCPs. The VCPs whose access code has been sent will then process the commands, which can, for example, include control module interrogation, system status inquiry, or control module programming. Based upon predetermined instructions resident in the VCPs or instructions of the transmitted commands, the subject VCPs transmit to the communication satellites response data, which may include GPS information. The response data is then retransmitted from the communication satellites to the communication satellite provider which then transfers t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Internet based vehicle data communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Internet based vehicle data communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internet based vehicle data communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.