Internal surge protector device

Electricity: electrical systems and devices – Safety and protection of systems and devices – Impedance insertion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S104000

Reexamination Certificate

active

06266220

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates to novel, improved methods and systems for managing the flow of electricity to computer and other electronic hardware components and in particular to a method and apparatus to protect the components from voltage and power surges which can damage the equipment when the levels supplied to the electronic components surpass normal safe operating ranges.
BACKGROUND
Devices powered by an electric power supply generally have a voltage or power range across which they normally may operate safely. These devices may include computers and computer systems, computer components, power supplies, logic boards, hard disk drives and processors. Voltage or power fluctuations in the line connecting the power supply to the device being powered can push voltage or power beyond these normal operating ranges, and risks damaging the equipment.
For example, a computer motherboard is typically designed to be operated at voltages between +12 volts and −12 volts. The computer's power supply is powered from an alternating current (AC) wall outlet, and generates direct current (DC) power to run the computer system. The power supply transmitting the DC operating power may fluctuate, or surge, from time to time, causing the voltage at the power terminal of the component to rise above the +12 V DC limit, or sink below the −12 V DC limit. The safe operating range designed into the motherboard typically takes into account minor surges or dips in power. Therefore, the motherboard may typically operate without any danger to its components even if the operating voltage is pushed slightly beyond its normal operating range. When the operating voltage rises above the upper safe operating limit (an over-voltage condition), or sinks below the lower safe operating limit (an under-voltage condition), the motherboard or components thereof may be damaged or even destroyed by the excess power. Consequently, the end user of the motherboard may spend hundreds of dollars to replace damaged components or even an entire system. A need therefore exists for some method or device that will protect the sensitive internal components of a computer system or other electronic device from these dangerous power surges and dips.
Others have attempted to solve the problems attributable to DC power fluctuations with external surge protectors that plug in to AC wall outlets. The power cord which supplies the AC power to the electronic system is plugged into an external surge protector device, often in the form of a multiple device strip, which protects against AC fluctuations that physically occur outside of the electronic device or system between the wall AC outlet and the system's internal power supply. The general purpose of this approach is to manage the fluctuations at a location closer to the point of origin. The objective of placing the surge protector at this location is to send only safe AC power to the internal power supply, which in turn, should produce only safe DC power. There are several drawbacks to this approach. Most notably, these external surge protectors do not address the problems that arise from power fluctuations occurring inside the system from the power supply unit itself. Although the system is protected from dangerous external AC power fluctuations, there is nothing between the power supply component and the other sensitive electronic components to protect them from fluctuations caused by the power supply. The invention disclosed herein provides protection for electronic components from these types of power fluctuations by managing the flow of power from the internal power source to the internal components of a particular electronic device or system.
Others have attempted to solve the problems attributable to internal power fluctuations with devices that constantly monitor the voltage or power output from a power supply, and then shut down the power supply output when an over-voltage or under-voltage situation is detected. See U.S. Pat. No. 4,951,171 issued on Aug. 21, 1990 to Tran, et al. There are several drawbacks to this approach. First, the Tran invention requires the use of an active circuit to compare the power output level with a reference voltage level, and then determine whether the supply should be shut down. The protection circuit itself must also be powered from some dependent or independent source, because it includes active electronic components. Further, the invention requires numerous, costly components to make up the circuit which is used to monitor the power supply, and to generate the variety of different signals that enable or disable the power supply according to the result of the comparison. Due to the large number of components needed to create the circuit, and their relative complexity, the invention disclosed in Tran is not cost-efficient, and results in an increased cost of manufacture for which the end user ultimately pays. Further, there is no “add-on” circuit which can be installed in units that do not come with the protection circuit factory installed.
Therefore a need exists to provide effective, cost-efficient protection of electronic components from power fluctuations that may occur in an on-board or dedicated power supply.
SUMMARY OF THE INVENTION
There have now been invented and disclosed herein certain new and novel electronic system protection devices which have the advantage over those heretofore proposed in that they provide complete protection against over-voltage and under-voltage signal conditions without the need for sophisticated monitoring circuitry. Further, the invention as disclosed herein consists of relatively few components that are passive in nature, therefore requiring no outside power source. Further, due to the small number of components and their simplicity, the device provides protection from power fluctuations in both a cost-efficient and space-efficient manner.
The design, as disclosed herein, allows for convenient mounting within the system. As disclosed, the device may be mounted directly to the power supply, directly to a specific component, or anywhere there-between. The invention provides for easy installation on currently existing systems, because it may be sold as a “kit.” The kit may contain all necessary plugs, attachments, adaptors and/or other equipment necessary for installation. Additionally, the user will be provided an instruction booklet detailing the steps and methods for installing the invention into an existing system. Manufacturers may receive similar kits containing similar equipment and instructions for installation into future units.
The invention may protect one or more components operating at the same normal safe operating range at the same time, or protect each component individually. Finally, the invention, as disclosed herein, may individually protect several components operating at different normal safe operating ranges.
In summary, an internal surge protector of the kind herein disclosed provides better and broader protection from both over-voltage and under-voltage signal conditions, in a more cost-efficient and space-efficient way because it consists purely of passive components; and because its design allows for easy installation both during manufacture, and as an add-on.


REFERENCES:
patent: 3813578 (1974-05-01), Tiffany
patent: 4726638 (1988-02-01), Farrar et al.
patent: 4878145 (1989-10-01), Lace
patent: 5404542 (1995-04-01), Cheung
patent: 5488534 (1996-01-01), Rau et al.
patent: 5768600 (1998-06-01), Williams
patent: 6014750 (2000-01-01), Williams
Electronic Buyers' News ; Jan. 19, 1998 n 1092 p. 60 (4).
Electronic Buyers' News ; May 4, 1997 n 1056 p. 3 (2).
Computer Shopper ; Aug. 1997 , v 17 n8 p. 91(2).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Internal surge protector device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Internal surge protector device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internal surge protector device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563031

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.