Geometrical instruments – Apparel – Footwear
Reexamination Certificate
1998-09-02
2001-02-27
Gutierrez, Diego (Department: 2859)
Geometrical instruments
Apparel
Footwear
C033S809000, C033S542100, C033SDIG002, C033S542000, C324S716000, C324S723000
Reexamination Certificate
active
06192593
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates in general to shoe sizing. More specifically, but without restriction to the particular use which is shown and described, this invention relates to quantifying the interior dimensions and fit of a shoe.
2. Description of the Related Art
During the development and manufacturing of shoes, various production errors occur which result in shoes having inconsistent sizes and fits. Currently, for example, stick length inconsistencies are encountered during production. The stick length of a shoe is the internal linear measurement from the center of the heel to the center of the toe. It is common for shoe manufacturers to encounter large length inconsistencies for a given style and size shoe. These production errors are inherent in the way shoes are currently made.
Other errors inherent in shoe manufacturing arise from changes made to a shoe design during development and commercialization. For example, a shoe may be tested early in its design cycle and, using traditional fit testing methods, be found to fit well. As the design evolves, however, the elements of the shoe fit can be affected. Due to the pace of commercialization and the time consuming nature of traditional fit testing methods, the final shoe design may have different and unknown fit characteristics.
The present invention overcomes these problems by allowing shoe designers and developers to track the fit of a shoe during the design, development and production of the shoe. Changes in the internal dimensions of a shoe will alert the designer, developer and the factory to materials, process, or pattern discrepancies. These discrepancies, potentially cumulative, that are often found in the development and manufacture of shoes can be reduced if not eliminated by the present invention.
SUMMARY OF THE INVENTION
The present invention involves using a pneumatically activated probe that moves axially within a shoe and non-destructively measures the interior dimensions of the shoe. The probe is driven by a linear pneumatic actuator and the distance the probe travels within a shoe is measured by a linear potentiometer. The probe travel distance correlates to the internal linear dimension of the shoe measured from the heel to the toe (i.e., the stick length). Various types and styles of probes may be used to measure the stick length of shoes having various shoe widths. The pneumatic actuator is controlled by a computer system that allows for fast, accurate and reproducible testing of the interior dimensions of the shoe.
Briefly, the present invention involves attaching a probe to the output shafts of a pneumatic actuator and a linear potentiometer. The linear potentiometer is mounted above the actuator and the actuator is connected to a heel piece. The device is inserted into a shoe with the heel piece seated against the interior heel portion of the shoe. A computer system controlling the actuator extends the probe linearly into the shoe until the probe contacts the toe portion of the shoe. The potentiometer measures the linear displacement of the probe and thus determines the internal stick length of the shoe. Depending on the type of probe used, one can measure a variety of shoe fit parameters which include the stick length, forefoot width, length at a given width, and width at a given length. In addition, by attaching to the actuator and potentiometer a multi-axis probe having a plurality of pneumatically activated effectors spaced along the sides and across the top of the probe, one can measure the three-dimensional internal dimensions of the shoe. The computer controlled actuator retracts the probe to its original position and the testing may then be repeated.
Advantageously, the present invention allows for non-destructive testing of the interior dimensions of the shoe. Further, different fit conditions can be tested by varying the actuation pressure on the probe or, if the multi-axis probe is used, on the plurality of effectors extending out from the probe. In addition, a wide range of styles and sizes of shoes (men's and women's) can all be measured with the same instrument.
Various applications are envisioned with the present invention. A first application would occur during the development and commercialization of each shoe model. It is during these stages of the shoe development process that the present invention would play the important role of “tracking” the internal dimensions of the shoe.
For a given model, shoe development is an iterative process that involves many changes in materials, patterns, and even general design. At each step along the development process, shoe samples are produced that are evaluated both visually and, if there is adequate time, through fit testing. On occasion, changes in the shoe during the development process result in shoe samples that are not the same “fit” as their predecessors. Many times this change in a shoe fit is intentional. However, in the situation where a predecessor shoe fits well, it is very important that future changes in materials, patterns or even general design, do not negatively affect this fit. In a method of use, the present invention thus tracks the internal dimensions of all the sample shoes made. Drastic changes in internal dimensions from one sample to its next iteration will alert the shoe developer of the extent to which a given change has affected the fit of that particular model. Once a model's sample has been found to fit as desired, the internal dimensions measurement for that sample will serve as the standard against which subsequent samples, and even the eventual production shoes, are compared.
The primary improvement this method provides is the inclusion of an objective measurement device into the development and commercialization process. No longer would the shoe samples be evaluated solely on aesthetics or a subjective fit test. Moreover, the inclusion of this method will help to indicate the effect of various changes upon the internal dimensions of the shoe, and hence, their effect upon the fit of that shoe. Finally, once a good fit has been identified, knowledge of that internal dimensions measurement will help to ensure that subsequent samples and production shoes will consistently fit well.
A second application would be in a factory setting where the present invention would play an important role in measuring the fit consistency of a given shoe model during production of the shoe. Many shoes are produced in large volume, requiring multiple production sources and multiple production periods. In order to ensure the consistency of a given model that is produced in multiple factories in multiple countries over many months, the present invention can be utilized to measure various production samples made at each source throughout the production duration.
As discussed above, an internal dimensions specification or shoe standard, attained through the use of the present invention, will be determined for each shoe model. For multiple-sourced models, this specification is sent out to each of the factories that are to produce the shoe. The present invention would then be used to measure the internal dimensions of the shoe models at each factory and compare with the standard for that model. Drastic changes in the internal dimensions of these samples, as compared with the standard, will alert the developer and the factory to materials, process, or pattern discrepancies that need to be identified and eliminated before full-scale production may begin. The production method would also call for the measurement of a random sampling of each source's product at intervals throughout the production cycle on a given model. This sampling should ensure that a consistent product is produced at every source throughout the duration of the production process.
Additionally, with the present invention available to the factories, measurements could be taken on the internal dimensions of all shoes as they come down the production line, allowing for very quick discovery of potential prob
Borchers Bob
Edington Chris
Hailey Michael
Kilgore Bruce
O'Mohundo Lynn
Banner & Witcoff , Ltd.
Fernandez Maria
Gutierrez Diego
Nike International Ltd.
LandOfFree
Internal shoe sizing apparatus and method for sizing shoes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Internal shoe sizing apparatus and method for sizing shoes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internal shoe sizing apparatus and method for sizing shoes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2577458