Internal riser rotating control head

Boring or penetrating the earth – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S084300, C166S367000

Reexamination Certificate

active

06470975

ABSTRACT:

SPECIFICATION
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and system for drilling in deepwater. In particular, the present invention relates to a system for a quick release seal for sealing while drilling in deepwater using a rotatable pipe and a method for use of the system.
2. Description of the Related Art
Marine risers extending from a wellhead fixed on the floor of an ocean have been used to circulate drilling fluid back to a structure or rig. The riser must be large enough in internal diameter to accommodate the largest bit and pipe that will be used in drilling a borehole into the floor of the ocean. Conventional risers now have internal diameters of 19½ inches, though other diameters can be used.
An example of a marine riser and some of the associated drilling components, such as shown in
FIG. 1
, is proposed in U.S. Pat. No. 4,626,135, assigned on its face to the Hydril Company, which is incorporated herein by reference for all purposes. Since the riser R is fixedly connected between a floating structure or rig S and the wellhead W, as proposed in the '135 Hydril patent, a conventional slip or telescopic joint SJ, comprising an outer barrel OB and an inner barrel IB with a pressure seal therebetween, is used to compensate for the relative vertical movement or heave between the floating rig and the fixed riser. A Diverter has been connected between the top inner barrel IB of the slip joint SJ and the floating structure or rig S to control gas accumulations in the subsea riser R or low pressure formation gas from venting to the rig floor F. A ball joint BJ between the diverter D and the riser R compensates for other relative movement (horizontal and rotational) or pitch and roll of the floating structure S and the fixed riser R.
The diverter D can use a rigid diverter line DL extending radially outwardly from the side of the diverter housing to communicate drilling fluid or mud from the riser R to a choke manifold CM, shale shaker SS or other drilling fluid receiving device. Above the diverter D is the rigid flowline RF, shown in
FIG. 1
, configured to communicate with the mud pit MP. If the drilling fluid is open to atmospheric pressure at the bell-nipple in the rig floor F, the desired drilling fluid receiving device must be limited by an equal height or level on the structure S or, if desired, pumped by a pump to a higher level. While the shale shaker SS and mud pits MP are shown schematically in
FIG. 1
, if a bell-nipple were at the rig floor F level and the mud return system was under minimal operating pressure, these fluid receiving devices may have to be located at a level below the rig floor F for proper operation. Since the choke manifold CM and separator MB are used when the well is circulated under pressure, they do not need to be below the bell nipple.
As also shown in
FIG. 1
, a conventional flexible choke line CL has been configured to communicate with choke manifold CM. The drilling fluid then can flow from the choke manifold CM to a mud-gas buster or separator MB and a flare line (not shown). The drilling fluid can then be discharged to a shale shaker SS, and mud pits MP. In addition to a choke line CL and kill line KL, a booster line BL can be used.
In the past, when drilling in deepwater with a marine riser, the riser has not been pressurized by mechanical devices during normal operations. The only pressure induced by the rig operator and contained by the riser is that generated by the density of the drilling mud held in the riser (hydrostatic pressure). During some operations, gas can unintentionally enter the riser from the wellbore. If this happens, the gas will move up the riser and expand. As the gas expands, it will displace mud, and the riser will “unload”. This unloading process can be quite violent and can pose a significant fire risk when gas reaches the surface of the floating structure via the bell-nipple at the rig floor F. As discussed above, the riser diverter D, as shown in
FIG. 1
, is intended to convey this mud and gas away from the rig floor F when activated. However, diverters are not used during normal drilling operations and are generally only activated when indications of gas in the riser are observed. The '135 Hydril patent has proposed a gas handler annular blowout preventer GH, such as shown in
FIG. 1
, to be installed in the riser R below the riser slip joint SJ. Like the conventional diverter D, the gas handler annular blowout preventer GH is activated only when needed, but instead of simply providing a safe flow path for mud and gas away from the rig floor F, the gas handler annular blowout provider GH can be used to hold limited pressure on the riser R and control the riser unloading process. An auxiliary choke line ACL is used to circulate mud from the riser R via the gas handler annular blowout provider GH to a choke manifold CM on the rig.
Recently, the advantages of using underbalanced drilling, particularly in mature geological deepwater environments, have become known. Deepwater is considered to be between 3,000 to 7,500 feet deep and ultra deepwater is considered to be 7,500 to 10,000 feet deep. Rotating control heads, such as disclosed in U.S. Pat. No. 5,662,181, have provided a dependable seal between a rotating pipe and the riser while drilling operations are being conducted. U.S. Ser. No. 09/033,190, filed Mar. 2, 1998, entitled “Method and Apparatus for Drilling a Borehole Into A Subsea Abnormal Pore Pressure Environment” proposes the use of a rotating control head for overbalanced drilling of a borehole through subsea geological formations. That is, the fluid pressure inside of the borehole is maintained equal to or greater than the pore pressure in the surrounding geological formations using a fluid that is of insufficient density to generate a borehole pressure greater than the surrounding geological formation's pore pressures without pressurization of the borehole fluid. U.S. Ser. No. 09/260,642, filed Mar. 2, 1999, proposes an underbalanced drilling concept of using a rotating control head to seal a marine riser while drilling in the floor of an ocean using a rotatable pipe from a floating structure. U.S. Pat. No. 5,662,181 and Ser. Nos. 09/033,190 and 09/260,642 are incorporated herein by reference for all purposes. Additionally, provisional application Serial No. 60/122,350, filed Mar. 2, 1999, entitled “Concepts for the Application of Rotating Control Head Technology to Deepwater Drilling Operations” is incorporated herein by reference for all purposes.
It has also been known in the past to use a dual density mud system to control formations exposed in the open borehole. See
Feasibility Study of a Dual Density Mud System For Deepwater Drilling Operations
by Clovis A. Lopes and Adam T. Bourgoyne, Jr., © 1997 Offshore Technology Conference. As a high density mud is circulated from the ocean floor back to the rig, gas is proposed in this May of 1997 paper to be injected into the mud column at or near the ocean floor to lower the mud density. However, hydrostatic control of abnormal formation pressure is proposed to be maintained by a weighted mud system that is not gas-cut below the seafloor. Such a dual density mud system is proposed to reduce drilling costs by reducing the number of casing strings required to drill the well and by reducing the diameter requirements of the marine riser and subsea blowout preventers. This dual density mud system is similar to a mud nitrification system, where nitrogen is used to lower mud density, in that formation fluid is not necessarily produced during the drilling process.
U.S. Pat. No. 4,813,495 proposes an alternative to the conventional drilling method and apparatus of
FIG. 1
by using a subsea rotating control head in conjunction with a subsea pump that returns the drilling fluid to a drilling vessel. Since the drilling fluid is returned to the drilling vessel, a fluid with additives may economically be used for continuous drilling operations. ('495 patent, col. 6, In. 15 to co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Internal riser rotating control head does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Internal riser rotating control head, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internal riser rotating control head will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2995676

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.