Internal cooling circuit for gas turbine bucket

Fluid reaction surfaces (i.e. – impellers) – With heating – cooling or thermal insulation means – Changing state mass within or fluid flow through working...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C416S09600A

Reexamination Certificate

active

06957949

ABSTRACT:
In a gas turbine bucket having a shank portion and an airfoil portion having leading and trailing edges and pressure and suction sides, an internal cooling circuit, the internal cooling circuit having a serpentine configuration including plural radial outflow passages and plural radial inflow passages, and wherein a coolant inlet passage communicates with a first of the radial outflow passages along the trailing edge, the first radial outflow passage having a plurality of radially extending and radially spaced elongated rib segments extending between and connecting the pressure and suction sides in a middle region of the first passage to prevent ballooning of the pressure and suction sides at the first radial outflow passage.

REFERENCES:
patent: 4604031 (1986-08-01), Moss et al.
patent: 5472316 (1995-12-01), Taslim et al.
patent: 5536143 (1996-07-01), Jacala et al.
patent: 6019579 (2000-02-01), Fukuno et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 1,““F” Technology—the First Half-Million Operating Hours”, H.E. Miller.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 2, “GE Heavy-Duty Gas Turbine Performance Characteristics”, F. J. Brooks.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 3, “9EC 50Hz 170-MW Class Gas Turbine”, A. S. Arrao.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 4, “MWS6001FA—An Advanced-Technology 70-MW Class 50/60 Hz Gas Turbine”, Ramachandran et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 5, “Turbomachinery Technology Advances at Nuovo Pignone”, Benvenuti et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 6, “GE Aeroderivative Gas Turbines—Design and Operating Features”, M.W. Homer.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 7, “Advance Gas Turbine Materials and Coatings”, P.W. Schilke.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 8, “Dry Low NOxCombustion Systems for GE Heavy-Duty Turbines”, L. B. Davis.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 9, “GE Gas Turbine Combustion Flexibility”, M. A. Davi.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 10, “Gas Fuel Clean-Up System Design Considerations for GE Heavy-Duty Gas Turbines”, C. Wilkes.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 11, “Integrated Control Systems for Advanced Combined Cycles”, Chu et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 12, “Power Systems for the 21st Century “H” Gas Turbine Combined Cycles”, Paul et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 13, “Clean Coal and Heavy Oil Technologies for Gas Turbines”, D. M. Todd.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 14, “Gas Turbine Conversions, Modifications and Uprates Technology”, Stuck et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 15, “Performance and Reliability Improvements for Heavy-Duty Gas Turbines, ”J.R. Johnston.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 16, “Gas Turbine Repair Technology”, Crimi et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 17, “Heavy Duty Turbine Operating & Maintenance Considerations”, R. F. Hoeft.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 18, “Gas Turbine Performance Monitoring and Testing”, Schmitt et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 19, “Monitoring Service Delivery System and Diagnostics”, Madej et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 20, “Steam Turbines for Large Power Applications”, Reinker et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 21, “Steam Turbines for Ultrasupercritical Power Plants”, Retzlaff et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 22, “Steam Turbine Sustained Efficiency”, P. Schofield.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 23, “Recent Advances in Steam Turbines for Industrial and Cogeneration Applications”, Leger et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 24, “Mechanical Drive Steam Turbines”, D. Leger.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 25, “Steam Turbines for STAG™ Combined-Cycle Power Systems”, M. Boss.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 26, “Cogeneration Application Considerations”, Fisk et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 27, “Performance and Economic Considerations of Repowering Steam Power Plants”, Stoll et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 28, “High-Power-Density™ Steam Turbine Design Evolution”, J. H. Moore.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 29, “Advances in Steam Path Technologies”, Cofer, IV, et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 30, “Upgradable Opportunities for Steam Turbines”, D. R. Dreier, Jr.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 31, “Uprate Options for Industrial Turbines”, R. C. Beck.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 32, “Thermal Performance Evaluation and Assessment of Steam Turbine Units”, P. Albert.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 33, “Advances in Welding Repair Technology” J. F. Nolan.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 34, “Operation and Maintenance Strategies to Enhance Plant Profitability”, MacGillivray et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 35, “Generator Insitu Inspections”, D. Stanton.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 36, “Generator Upgrade and Rewind”, Halpern et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 37, “GE Combined Cycle Product Line and Performance”, Chase, et al.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 38, “GE Combined Cycle Experience”, Maslak et al.,.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 39, “Single-Shaft Combined Cycle Power Generation Systems”, Tomlinson et al.
“Advanced Turbine System Program—Conceptual Design and Product Development”, Annual Report, Sep. 1, 1994-Aug. 31, 1995.
“Advanced Turbine Systems (ATS Program) Conceptual Design and Product Development”, Final Technical Progress Report, vol. 2- Industrial Machine, Mar. 31, 1997, Morgantown, WV.
“Advanced Turbine Systems (ATS Program), Conceptual Design and Product Development”, Final Technical Progress Report, Aug. 31, 1996, Morgantown, WV.
“Advanced Turbine Systems (ATS) Program, Phase 2, Conceptual Design and Product Development”, Yearly Technical Progress Report, Reporting Period: Aug. 25, 1993-Aug. 31, 1994.
“Advanced Turbine Systems” Annual Program Review, Preprints, Nov. 2-4, 1998, Washington, D.C. U.S. Department of Energy, Office of Industrial Technologies Federal Energy Technology Center.
“ATS Conference” Oct. 28, 1999, Slide Presentation.
“Baglan Bay Launc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Internal cooling circuit for gas turbine bucket does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Internal cooling circuit for gas turbine bucket, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internal cooling circuit for gas turbine bucket will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3492560

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.