Internal-combustion engines – Cooling – System drained and/or heat-storing
Reexamination Certificate
2002-04-01
2004-01-27
Kamen, Noah P. (Department: 3747)
Internal-combustion engines
Cooling
System drained and/or heat-storing
C123S14250R
Reexamination Certificate
active
06681725
ABSTRACT:
INCORPORATION BY REFERENCE
The disclosure of Japanese Patent Application No. 2001-110239 filed on Apr. 9, 2001 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an internal combustion engine equipped with a regenerator.
2. Description of the Related Art
Generally, when an internal combustion engine is running at temperatures under a predetermined temperature around combustion chambers, fuel atomization supplied to the combustion chambers deteriorates and so did exhaust gas emission due to quenching around walls of the combustion chambers.
In order to obviate this problem, an internal combustion engine equipped with a regenerator is being developed which can accumulate heat generated from combustion when the engine is running. Then the accumulated heat is supplied to the engine when the engine is not running or the engine needs to be started. However, the amount of heat accumulated in the regenerator is limited, then a technology which utilizes the limited amount of heat effectively is being disclosed.
According to Japanese patent application Laid-open No. 6-185359, the engine is equipped with a first coolant channel which supplies water coolant to a cylinder block, a second coolant channel which supplies coolant to a cylinder head independently and is connected to a regenerator.
A regenerator in the internal combustion engine which is formed according to the above prior technology supplies heat to the cylinder head intensively through the second coolant channel. The heat is emitted from the regenerator when the engine is under cold conditions. As mentioned above, the limited amount of heat can be supplied to the internal combustion engine effectively by supplying the heat accumulated in the regenerator to a cylinder head intensively. Therefore, emission performance and fuel efficiency can be improved.
However, a coolant channel, which is connected to the cylinder head and the cylinder block, flows into both the cylinder head and the cylinder block. Water coolant flows into devices such as a radiator and a heater core which are located outside the internal combustion engine since some of the water coolant channels are connected to these devices. If heat is supplied to a part where heat supply is not needed, the temperature of coolant drops unnecessarily which increases heat consumption in the regenerator. If a regenerator with large volume is to be installed in a vehicle, a quite large device is needed which makes the installation difficult. Even if the installation is possible, fuel consumption and automobile performance deteriorates due to the increased mass.
In this connection, an internal combustion engine needs to be warmed up before being started to start the internal combustion engine under warm conditions. However, it is difficult to precisely grasp the timing of starting the engine. Therefore, heat needs to be supplied to the internal combustion engine for a long period, when the timing of starting the engine is being delayed for some reason. The amount of heat accumulated in the regenerator is limited, and therefore it is important to utilize the heat effectively to supply heat to the internal combustion engine for a long period.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a technology to supply heat to an internal combustion engine for a long period even when the internal combustion engine is turned off. Therefore, deterioration of exhaust emission can be prevented.
According to a first aspect of the invention, an internal combustion engine is equipped with an engine body, which includes a cylinder head and a cylinder block, and a regenerator which accumulates heat. The internal combustion engine further includes a circulation system which circulates a heat medium, a cylinder head part channel which circulates the heat medium into the cylinder head, a cylinder block part channel which circulates the heat medium into the cylinder block, a connecting channel which connects the cylinder head part channel with the cylinder block part channel, a heat supply device that supplies heat accumulated in the regenerator to the internal combustion engine through the heat medium in the circulation channel, and a restraining device that restrains heat circulation in the connecting channel when heat is supplied by the heat supply device or the internal combustion engine is under cold conditions.
In an internal combustion engine equipped with a regenerator according to the first aspect, the heat, which is generated when the internal combustion engine is running, is stored by the regenerator even after the internal combustion engine is turned off. The heat accumulated by the regenerator circulates into the circulation system through the heat medium. The heat medium passes the cylinder block part channel, the connecting channel, and the cylinder head part channel, all of which are provided in the internal combustion engine, after reaching the internal combustion engine. At this time, the heat medium supplies heat to the internal combustion engine.
As described above, the regenerator loses heat by supplying heat to the internal combustion engine. On the other hand, the heat is supplied to the internal combustion engine so that the temperature of the internal combustion engine rises even before the internal combustion engine is starting.
The restraining device restrains circulation of the heat medium in the connecting channel and in a part where heat supply is not needed in the internal combustion engine. For example, components of the internal combustion engine can be arranged in the way that the heat medium does not circulate in the cylinder block part channel since it is effective to mainly warm the cylinder head part to restrain deterioration of the exhaust gas emission.
As described above, the limited amount of heat accumulated in a regenerator can be supplied to an internal combustion engine for long period by restraining unnecessary heat consumption. Furthermore, downsizing a regenerator and shortening time to supply heat have been made possible.
The restraining device can be arranged in the way that circulation of the heat medium is shut off completely or can be a diaphragm through which the heat medium can circulate to a certain extent. Also, the restraining device can include a throttle valve which controls the amount of heat medium circulation or can be a thermostat valve which automatically opens and closes according to temperatures of the heat medium. Furthermore, the restraining device can be a electromagnetic valve which controls opening and closing the valve from outside of an internal combustion engine.
The restraining device can cancel restraining circulation of the heat medium when an internal combustion engine has started. The cancel can be conditioned on a period before and after starting an internal combustion engine or on that a certain time passes after starting an engine. Furthermore, the cancel can be conditioned on that the heat medium reaches a certain temperature.
According to a second aspect of the invention, an internal combustion engine is equipped with an engine body, which includes a cylinder head and a cylinder block, and a regenerator which accumulates heat. The internal combustion engine further includes a circulation system which circulates the heat medium, a cylinder head part channel which circulates the heat medium into the cylinder head, a cylinder block part channel which circulates the heat medium into the cylinder block, a connecting channel which connects the cylinder head part channel with the cylinder block part channel, a heat supply device that supplies the heat accumulated in the regenerator to the internal combustion engine through the heat medium in the circulation channel, and a circulation direction restraining device that restrains circulation directions of the heat medium in the connecting channel.
In an internal combustion engine equipped with a regenerator according to the
Arisawa Katuhiko
Iwatani Kazuki
Kobayashi Hideo
Suzuki Makoto
Tabata Masakazu
LandOfFree
Internal combustion engine with regenerator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Internal combustion engine with regenerator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internal combustion engine with regenerator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3247530