Internal combustion engine

Internal-combustion engines – Rotary – With compression – combustion – and expansion in a single...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S01800A, C123S0430AA, C123S0430AA, C418S178000

Reexamination Certificate

active

06796285

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to internal combustion engines. In an internal combustion engine, the basic functionality includes: (1) the intake of a fuel-air mixture into a combustion chamber, (2) the compression of the fuel-air mixture, (3) the ignition of the fuel-air mixture, and (4) the expansion of the ignited mixture and exhausting of the combustion gases. The resultant release of energy in the form of expanding gas is used to power various mechanical devices, including vehicles.
A reciprocating internal combustion engine is perhaps the most common form of internal combustion engine. In a reciprocating internal combustion engine, the reciprocating motion of a piston in a cylinder results in the compression of the fuel-air mixture and the expansion of combustion gases. The energy is transformed from linear motion into rotational motion through connection of the piston to a crankshaft.
Most modern vehicle engines currently use a piston-cylinder arrangement in what is referred to as a four-stroke combustion cycle, comprised of (1) an intake stroke, (2) a compression stroke, (3) a combustion stroke, and (4) an exhaust stroke. In a four-stroke combustion cycle using a typical piston-cylinder arrangement, the piston starts at the top of the combustion chamber (i.e., the cylinder), and an intake valve opens. The piston moves downwardly within the cylinder, and the fuel-air mixture is drawn into the cylinder through the intake valve, completing the intake stroke. The piston then moves back upwardly to compress the fuel-air mixture until reaching the top of the stroke, completing the compression stroke. When the piston reaches the top of the stroke, the spark plug ignites the compressed fuel-air mixture, resulting in a controlled explosion that drives the piston downwardly, completing the combustion stroke. Finally, once the piston reaches the bottom of its stroke, an exhaust valve opens, and combustion gases are forced out of the cylinder by the upward movement of the piston back to the top of its stroke, completing the exhaust stroke and readying the piston for a subsequent combustion cycle.
Although common in vehicles, a reciprocating internal combustion engine using a four-stroke combustion cycle does have some disadvantages. As a result, other engines have been developed that use the same basic combustion principles with some variation. For example, in an internal combustion engine using a two-stroke combustion cycle, the intake and exhaust valves are eliminated. Instead, intake and exhaust ports are located on opposite sides of the cylinder. After each expansion stroke, combustion gases under pressure exit the cylinder through the exhaust port, and a fuel-air mixture is drawn in through the intake port. Although there is only one expansion cycle per crankshaft revolution, a two-cycle engine is must less efficient than a four-cycle engine.
Another reciprocating internal combustion engine is a diesel engine, which can have a four-stroke or a two-stroke combustion cycle. Unlike the above-described engines, however, a diesel engine draws in and compresses only air in the cylinder. This air is compressed by the piston to more than 450 psi, resulting in an air temperature of about 900-1100° F. At the bottom of the compression stroke, diesel fuel is injected into the cylinder, and the temperature of the air within the cylinder is sufficient to cause ignition of the fuel-air mixture without the need for a spark plug.
In any event, a reciprocating internal combustion engine has its disadvantages. The piston has a significant mass and thus inertia, which can cause vibration during motion and limits the maximum rotational speed of the crank shaft. Furthermore, such engines have relatively low mechanical and fuel efficiencies.
As a result of such disadvantages, some attempts have been made to propose alternate combustion engine designs. Perhaps the most well-known and commercially successful of these alternate designs is the Wankel or rotary piston engine. The Wankel engine has a quasi-triangular rotating piston that moves along an eccentric path to rotate the crankshaft. Rather than using inlet and exhaust valves, the edges of the rotating piston open and close ports in the wall of the combustion chamber. In other words, intake and exhaust timing are controlled solely by the motion of the rotor.
As the piston of the Wankel engine rotates, seals mounted at its three corners continuously sweep along the wall of the combustion chamber. The enclosed volumes formed between the piston and the wall increase and decrease through each revolution of the piston. A fuel-air mixture is drawn into an enclosed volume, compressed by the rotation of the piston that decreases the enclosed volume, and then ignited with the combustion gases being accommodated by and expelled through the expansion of the enclosed volume. In short, a complete four-stroke combustion cycle is achieved, but since there is no reciprocating motion, higher rotational speeds are possible.
The most pronounced disadvantage of a Wankel or rotary piston engine is the difficulty in adequately scaling the enclosed spaces between the piston and the wall of the combustion chamber that increase and decrease through each revolution of the piston. If these enclosed spaces are allowed to communicate with another, the engine can not properly function.
Since development of the Wankel engine, other attempts have been made to improve upon its operation. For example, U.S. Pat. No. 5,415,141 describes and claims an engine that has a central rotor and a plurality of radially sliding vanes. The vanes rotate clockwise with the rotor to form enclosed volumes between the vanes, the side walls of the combustion chamber, and the rotor. These enclosed volumes decrease and increase in volume throughout the combustion cycle, with the fuel-air mixture being drawn into an enclosed volume, compressed by the rotation of the rotor and associated vane, and then ignited with the combustion gases being accommodated by and expelled through the expansion of the enclosed volume. Nevertheless, as with a Wankel engine, such a design still suffers from the problem of adequate sealing of the enclosed volumes from one another. Furthermore, the drag of the vanes along the wall of the combustion chamber reduces power and fuel efficiency.
It is therefore an object of the present invention to provide an improved internal combustion engine that avoids the problems of common reciprocating motion, piston-type engines.
It is a further object of the present invention to provide an improved internal combustion engine that avoids the sealing and efficiency problems of rotary combustion engines.
These and other objects and advantages of the present invention will become apparent upon a reading of the following description along with the appended drawings.
SUMMARY OF THE INVENTION
The present invention is an internal combustion engine that is generally comprised of a torque wheel mounted for rotation within a housing and driving a crankshaft. The housing defines a central cavity (or combustion chamber) in which the torque wheel and associated components of the engine are enclosed. The torque wheel includes a plurality of separate arms in a spaced arrangement about the center of the torque wheel, thereby defining corresponding volumes between the respective arms. Positioned within these volumes are substantially identical combustion gates. Although not directly secured to the torque wheel, the shape of the combustion gates causes them to be tightly retained and oriented relative to the torque wheel.
As the torque wheel rotates, the combustion gates are moved through an elliptical path. Air is drawn into the central cavity of the housing and fuel is introduced into the central cavity of the housing to create a fuel/air mixture in one of the volumes between the respective arms of said torque wheel and adjacent one of the combustion gates. This fuel/air mixture is then compressed during the continuing rotation of the torque wheel by the pivoting and outward mo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240606

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.