Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2000-12-06
2004-02-03
Bennett, Henry (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S286000
Reexamination Certificate
active
06685679
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to catheters for performing medical procedures including percutaneous transluminal coronary angioplasty. More particularly, the present invention relates to catheters with improved shaft designs.
BACKGROUND OF THE INVENTION
The use of intravascular catheters has become an effective method for treating many types of vascular disease. In general, an intravascular catheter is inserted into the vascular system of the patient and navigated through the vasculature to a desired target site. Using this method, virtually any target site in the patient's vascular system may be accessed, including the coronary, cerebral, and peripheral vasculature. Examples of therapeutic purposes for intravascular catheters include percutaneous transluminal angioplasty (PTA) and percutaneous transluminal coronary angioplasty (PTCA).
Intravascular catheters are commonly used in conjunction with a guidewire. A guidewire may be advanced through the patient's vasculature until it has reached a target location. Once in place, a catheter may be threaded onto the guidewire and urged distally until the distal end of the catheter reaches a target location.
Intravascular catheters adapted for use with a guidewire typically are classified as over-the-wire (OTW) or single operator exchange (SOE). An OTW catheter includes a guidewire lumen extending from the distal tip of the catheter to the proximal end of the catheter. When intravascular catheters are used, it is common for physicians to remove one catheter and exchange it for another. While exchanging catheters, the guidewire must be held in place so as to keep its distal end near the target area. A portion of the guidewire is typically grasped by the physician in order to withdraw the first catheter while maintaining the distal end of the guidewire in the desired position. To properly anchor the guidewire, a portion of the guidewire must be exposed at all times so it is available for the physician to grasp. In the case of an OTW catheter, this requires that the length of the guidewire extending beyond the patient's body be longer than the catheter. Consequently, in many cases intravascular catheters are longer than 200 cm or require guidewire extensions to facilitate exchange. Correspondingly, there may be more than 200 cm of wire extending from the patient. Managing this length of wire during a catheter exchange procedure is awkward, and typically requires more than one person. Additionally, contamination must be avoided by assuring that the guidewire is not dropped from the sterile field.
SOE catheters were developed in response to difficulties encountered when exchanging OTW catheters. Accordingly, SOE catheters have a relatively short guidewire lumen relative to the length of the catheter. Therefore, the length of guidewire extending beyond the body of the patient need only be slightly longer than the guidewire lumen of the catheter. The physician may anchor or hold the guidewire as the first catheter is removed from the body with the exchange occurring over the shorter guidewire lumen. The guidewire lumen of an SOE catheter typically includes a distal guidewire port disposed at the distal tip of the catheter and a proximal guidewire port disposed proximally of the distal end of the catheter.
When in use, intravascular catheters enter a patient's vasculature at a convenient location and then are urged to a target region. Once the distal portion of the catheter has entered the patient's vascular system the physician may urge the distal tip forward by applying longitudinal forces to the proximal portion of the catheter. For the catheter to effectively communicate these longitudinal forces it is desirable that the catheter have a high level of pushability and kink resistance particularly near the proximal end.
Frequently the path taken by a catheter through the vascular system is tortuous, requiring the catheter to change direction frequently. In some cases, it may even be necessary for the catheter to double back on itself. In order for the catheter to conform to a patient's tortuous vascular system, it is desirable that intravascular catheters be very flexible, particularly near the distal end.
Further, while advancing the catheter through the tortuous path of the patients vasculature, physicians often apply torsional forces to the proximal portion of the catheter to aid in steering the catheter. Torsional forces applied on the proximal end must translate to the distal end to aid in steering. It is therefore desirable that the proximal portion of an intravascular catheter have a relatively high level of torquability to facilitate steering.
The need for this combination of performance features is often addressed by manufacturing a catheter that has two or more discrete tubular members having different performance characteristics. For example, a relatively flexible distal section may be connected to a relatively rigid proximal section. When a catheter is formed from two or more discrete tubular members, it is often necessary to form a bond between the distal end of one tubular member and the proximal end of another tubular member.
An approach used to enhance pushability and torquability of intravascular catheters is to construct the proximal end from hypodermic tubing, or a “hypotube”. While a hypotube can add significant pushability and torquability to an intravascular catheter due to its intrinsic strength and rigidity, it can kink.
A need, therefore, exists for the manufacturing of SOE intravascular catheters to include shaft designs that maintain pushability, flexibility, and torquability while limiting the untoward properties of using a hypotube.
SUMMARY OF THE INVENTION
The present invention relates generally to catheters for performing medical procedures including percutaneous transluminal coronary angioplasty. More particularly, the present invention relates to catheters with improved shaft designs. Preferably, the catheter shaft comprises an elongate support member with proximal and distal ends, at least one gap within the elongate support member. In a preferred embodiment of the current invention, a sheath is disposed about the elongate support member.
In a preferred embodiment of the current invention, the gap defines a first edge and a second edge. Preferably, a first projection extends from the first edge and a second projection extends from the second edge. In an exemplary embodiment, the first projection and the second projection overlap. According to a preferred embodiment, the first edge and the second edge may further comprise additional projections.
In an exemplary embodiment of the current invention, a gap within the elongate support member is used to improve its properties. Preferably, the gap improves flexibility while retaining the desired level of pushability and torquability. The gap within the elongate support member may be formed by a number of methods. The methods of forming a gap may include, but are not limited to, cutting (for example laser cutting), sawing, and electrochemical masking.
In a particular embodiment of the current invention, a gap defines a first edge and a second edge. Preferably, the gap comprises a variable taper wherein the gap changes from the proximal to distal end. By introducing a taper, the level of flexibility may vary between proximal and distal ends. For example, the taper may result in a gap that is greater near the distal end. This could result in greater flexibility near the distal end of the catheter.
In an alternative embodiment of the current invention, the first projection and the second projection are interlocking. In an exemplary embodiment, the first projection is substantially rounded. By interlocking the projections, the elongate support member may retain pushability and torquability while increasing flexibility. Further, altering the shape of the projections can enhance desired flexibility changes throughout the elongate support member. For example, a rounded projection can vary in size along the lon
Bennett Henry
Crompton Seager & Tufte LLC
Dagostino Sabrina
Sci-Med Life Systems, Inc.
LandOfFree
Interlocking metal shaft does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interlocking metal shaft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interlocking metal shaft will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3335586