Interleukin—1 receptor antagonist and uses thereof

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S287200, C435S288300, C435S288400, C536S023100

Reexamination Certificate

active

06541623

ABSTRACT:

2. FIELD OF THE INVENTION
The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins.
3. BACKGROUND
Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression. cloning techniques clone novel polynucleotides “directly” in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent “indirect” cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity by virtue of their secreted nature in the case of leader sequence cloning, or by virtue of the cell or tissue source in the case of PCR-based techniques. It is to these proteins and the polynucleotides encoding them that the present invention is directed. In particular, this invention is directed to a novel Interleukin-1 Receptor Antagonist.
Cytokines, such as Interleukin-1, are well known to cause morphological and functional alterations in endothelial cells. These alterations occur in part as a result of “endothelial cell activation” Distinct immune-mediators such as tumor necrosis factor (TNF), interleukin-1 (Interleukin-1), and gamma-interferon (IFN) appear to induce different but partially overlapping patterns of endothelial cell activation including increased procoagulant activity (Bevilaqua (1986) PNAS, 83:4533-4537), PGI and 2 production (Rossi (1985), Science, 229:174-176), HLA antigen expression (Pober (1987) J. Immunol., 138:3319-3324) and lymphocyte adhesion molecules (Carender (1987) J. Immunol., 138:2149-2154). These cytokines are also reported to cause hypotension, vascular hemorrhage, and ischemia (Goldblum et al. 1989, Tracey et al. Science 234:470, 1986). A major dose limiting toxicity of these and other biological response modifiers is hypotension and vascular leakage (Dvorak (1989) J.N.C.I., 81 :497-502).
The ability of IL-1 to modify biological responses has been demonstrated in a variety of studies. For example, the administration of Interleukin-1 to rabbits (Wakabayashi et al., FASEB J 1991;5:338; Okusawa et al. J Clin Invest 1988;81:1162; Ohlsson et al., Nature 1990;348:550; Aiura, et al. Cytokine 1991;4:498) and primates (Fischer et al. Am J Physiol 1991;261:R442) has been shown to result in hypotension, tachycardia, lung edema, renal failure, and, eventually, death, depending on the dose. When the serum from the Interleukin-1 treated animals is examined, the elevation of other cytokines is evident, mimicking the levels seen in acute pancreatitis in humans. (Guice et al., J Surg Res 1991;51:495-499; Heath et al., Pancreas 1993;66:41-45) There is a large body of evidence currently available which supports the role of Interleukin-1 as a major mediator of the systemic response to diseases such as sepsis and pancreatitis and as an activator of the remaining members of the cytokine cascade. (Dinarello et al., Arch Surg 1992;127:1350-1353).
The cytokine Interleukin-1 is a key mediator in the inflammatory response (for reviews, see Dinarello (1991) Blood 77: 1627-1652; Dinarello et al. (1993) New England J. Med. 328:106-113; Dinarello (1994) FASEB J. 8:1314-1325). The importance of Interleukin-1 in inflammation has been demonstrated by the ability of the highly specific Interleukin-1 receptor antagonist protein to relieve inflammatory conditions (for review, see Dinarello (1991) Blood 77: 1627-1652; Dinarello et al. (1993) New England J. Med. 328:106-113; Dinarello (1994) FASEB J. 8:1314-1325; Dinarello (1993) Immunol. Today 14:260-264). Many of the proinflammatory effects of Interleukin-1, such as the upregulation of cell adhesion molecules on vascular endothelia, are exerted at the level of transcriptional regulation. The transcriptional activation by Interleukin-1 of cell adhesion molecules and other genes involved in the inflammatory response appears to be mediated largely by NF-kappa B (Shirakawa et al. (1989) Molc. Cell Biol. 9:2424-2430; Osborn et al., (1989) Proc. Natl. Acad. Sci. USA 86:2336-2340; Krasnow et al., (1991) Cytokine 3:372-379; Collins et al., (1993) Trends Cardiovasc. Med. 3:92-97). In response to Interleukin-1, the NF-kappa B inhibitory factor I kappa B is degraded and NF-kappa B is released from its inactive cytoplasmic state to localize within the nucleus where it binds DNA and activates transcription (Liou et al. (1993) Curr. Opin. Cell Biol. 5:477-487; Beg et al., (1993) Mol. Cell. Bid. 13:3301-3310).
Interleukin-1 is also a mediator of septic shock. Septic shock, a life-threatening complication of bacterial infections, affects 150,000 to 300,000 patients annually in the United States (Parrillo, J. E. (1989), Septic Shock in Humans: Clinical Evaluation, Pathogenesis, and Therapeutic Approach (2nd ed.) In: Textbook of Critical Care Shoemaker, et al., editors, Saunders Publishing Co., Philadelphia, Pa., pp. 1006). The cardiovascular collapse and multiple metabolic derangements associated with septic shock are due largely to bacterial endotoxin (ET), which has been shown to elicit a septic shock-like condition when administered to animals (Natanson, et al. (1989), Endotoxin and Tumor Necrosis Factor Challenges in Dogs Simulate the Cardiovascular Profile of Human Septic Shock, J. Exp. Med. 169:823). Thus, there is a great need for modulators of Interleukin-1.
4. SUMMARY OF THE INVENTION
The compositions of the present invention include novel isolated polypeptides, in particular, novel Interleukin-1 Receptor Antagonist proteins (referred to hereafter as IL-1Hy1 or IL-1 Hy1 receptor antagonist), isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, and antibodies that specifically recognize one or more epitopes present on such polypeptides.
The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.
The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 3 or 5.
The isolated polynucleotides of the invention further include, but are not limited to, a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 2, 4, or 6; a polynucleotide comprising the full length protein coding sequence of SEQ ID NO: 1, 2, 4, or 6, and; a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of SEQ ID NO: 1, 2, 4, or 6. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes to the complement of the nucleotide sequence of SEQ ID NO: 1, 2, 4, or 6 under stringent hybridization conditions; a polynucleotide which is an allelic variant of any polynucleotide recited above; a polynucleotide which encodes a species homolog of any of the proteins recited above; or a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptide of SEQ ID NO: 1, 2, 4, or 6.
The isolated polynucleotides of the invention further include, but are not limited to a polynucleotide comprising the nucleotide sequence of the genomic clone SEQ ID NO: 7 or 8; a polynucleotide assembled from one or more of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interleukin—1 receptor antagonist and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interleukin—1 receptor antagonist and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interleukin—1 receptor antagonist and uses thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3070320

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.