Electrical generator or motor structure – Dynamoelectric – Rotary
Reexamination Certificate
2002-03-01
2004-03-09
Ponomarenke, Nicholas (Department: 2834)
Electrical generator or motor structure
Dynamoelectric
Rotary
C310S154060, C310S156550, C310S044000, C310S181000, C310S156030, C310S216006, C310S261100, C029S598000, C029S609000, C029S602100
Reexamination Certificate
active
06703746
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to electric or hybrid electric vehicle propulsion systems. More specifically, the present invention relates to the design of electric traction motors or machines for use in electric or hybrid vehicles.
BACKGROUND OF THE INVENTION
In today's automotive market, there exists a variety of electric propulsion or drive technologies used to power vehicles. The technologies include electric traction motors such as DC motors, AC induction motors, switched reluctance motors, synchronous reluctance motors, brushless DC motors and corresponding power electronics. Brushless DC motors are of particular interest for use as traction motors in an electric vehicle because of their superior performance characteristics, as compared to DC motors and AC induction motors. Brushless DC motors typically operate with a permanent magnet rotor. A permanent magnet rotor may be configured as a surface mount or interior/buried permanent magnet rotor. An interior permanent magnet (IPM) motor or machine has performance attributes, when compared to DC motors and AC induction motors, that include relatively high efficiency, relatively high torque, relatively high power densities, and a long constant power operating range which make an IPM machine attractive for vehicle propulsion applications.
Permanent magnets buried inside a rotor for a brushless DC motor exhibit high reluctance directly along the magnetic axis or the d-axis due to the low permeability of the permanent magnets. While along the q-axis, between the magnetic poles or magnetic barriers of an IPM rotor, there is no magnetic barrier and reluctivity to magnetic flux is very low. This variation of the reluctance around the rotor creates saliency in the rotor structure of an IPM machine. Therefore, the IPM rotors have reluctance torque in addition to the permanent magnet torque generated by the magnets buried inside the rotor. Reluctance in the d-axis can be created by one magnet such as found in a single barrier rotor design.
A single magnet of the one barrier rotor design can also be split into several layers creating a multi-barrier design. The multi-barrier design reduces leakage and improves the rotor saliency. Accordingly, motors having multi-barrier rotors have numerous performance advantages over a single barrier rotor design, including relatively high overall efficiency, extended high speed constant power operating range, and improved power factor. Improved saliency of the multi-barrier rotor helps to lower the amount of magnets or magnetic material in an IPM machine, as compared to a single barrier IPM machine or surface-mounted permanent magnet machine, by reducing dependency on magnetic torque. The amount of magnetic material needed to generate a specific torque and wattage rating depends on the level of saliency of the rotor. The higher the rotor saliency, the lower the magnetic material usage for the same overall machine performance. Electric motors having a multi-barrier rotor design, as compared to single barrier design, generate higher rotor saliency.
Magnets in an IPM machine can be pre-magnetized and then inserted inside the rotor. This magnet insertion is a complex and relatively costly step that adds manufacturing steps to the assembly of the IPM machine.
Post-magnetization of inserted magnetic material is possible if the magnets are inserted near the rotor surface. For post-magnetization, magnetic material may be preformed outside of the rotor, inserted into the rotor, and then magnetized. This is usually the case with sintered magnets, which require a certain orientation. A further type of magnetic material used that may be used in an IPM rotor is bonded magnets, which are usually mixed with a plastic, such as PPS, and may also be preformed outside of the rotor and then inserted into the rotor. However, generally bonded magnetic material is injected into the rotor cavities under high temperature and pressure.
Electric motors having multi-layer buried magnets in their rotors, as shown in
FIG. 2
, exhibit excellent performance characteristics for vehicle propulsion application. The problems associated with post-magnetizing high energy magnetic material in such a barrier or rotor geometry would result in a large amount of magnetic material buried deep within the rotor that may only partially magnetize or not magnetize at all. The strength of a magnet is typically defined by the magnetic energy product (MEP). MEP is proportional to the product of magnetic remnant flux density, B
r
, and the coercivity, H
c
. MEP is measured in units of energy per unit volume. High energy magnetic material needs a relatively high magnetizing field during the magnetizing process. In present post-magnetization processes, the magnetizing field has difficulty reaching deep in the rotor because of the saturation of the magnetic circuit. Post-magnetization works efficiently for high energy magnetic material buried or located near the surface of the rotor, but for high energy magnetic material buried relatively deep in the rotor, post-magnetization is difficult due to the weakening of the magnetizing field.
SUMMARY OF THE INVENTION
The present invention includes a method and apparatus for the design of an IPM machine rotor. The present invention varies the type and strength of magnetic material in different regions of the rotor. In one embodiment of the present invention, NdFeB material or other high energy magnetic materials are configured in the entire outer barrier of the rotor of
FIG. 2
where they may be easily magnetized. However, high energy magnetic material in the middle section or the inner regions of the rotor may not be exposed to a magnetizing field strong enough to fully magnetize a high energy magnetic material. In the present invention, low energy magnetic material is placed in those areas of the rotor that are difficult to magnetize, as they require a relatively smaller magnitude magnetizing field, as compared to the high energy magnetic material. Accordingly, the low energy magnetic material in the inner region may be fully magnetized. Low energy magnets in the inner region do not contribute to the air gap flux. However, the low energy magnets ensure bridge saturation, which is important to ensure high saliency corresponding to better performance. A non-magnetized high energy magnet in the inner region may contribute to a waste of valuable magnetic material and also inadequate bridge saturation. This inadequate bridge saturation will lower the rotor saliency and motor performance.
REFERENCES:
patent: 5187401 (1993-02-01), Rahman
patent: 5397975 (1995-03-01), Syverson
patent: 5751089 (1998-05-01), Stridberg
patent: 6177745 (2001-01-01), Narita
Biais Francois J.
Rahman Khwaja M.
DeVries Christopher
Mohandesi Iraj A.
Ponomarenke Nicholas
LandOfFree
Interior permanent magnet rotor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interior permanent magnet rotor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interior permanent magnet rotor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3251311