Optics: measuring and testing – By light interference – For refractive indexing
Reexamination Certificate
2000-03-06
2002-04-30
Kim, Robert (Department: 2877)
Optics: measuring and testing
By light interference
For refractive indexing
C356S134000
Reexamination Certificate
active
06381025
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to an interferometric detection system and method that can be used, for example, for detection of refractive index changes in picoliter sized samples for chip-scale analyses. The detection system has numerous applications, including universal/RI detection for CE (capillary electrophoresis), CEC (capillary electrochromatography) and FIA, physiometry, cell sorting/detection by scatter, ultra micro calorimetry, flow rate sensing and temperature sensing.
2. Description of the Prior Art
Capillary-based analysis schemes, biochemical analysis, basic research in the biological sciences such as localized pH determinations in tissues and studies in protein folding, detection and study of microorganisms, and the miniaturization of instrumentation down to the size of a chip all require small volume detection. In fact miniaturization of fluid handling systems is at the heart of the genomics and proteomics technology effort. These systems allow one to manipulate single cells or even single macromolecules and it has been recently shown that when liquid handling systems are shrunk to the micron and sub-micron range, small Reynolds numbers and mixing nanoliters in microseconds are possible. Yet, detecting the absolute temperature changes produced in a nanoliter volume T-jump experiment has not been possible. Additionally, the ability to measure biological events such as cold denaturation and binding constants at low temperatures is critically important, but currently limited by existing instrumentation. The potential to perform cellular level investigations and to do high throughput analysis can potentially be realized by using a new generation of analytical instruments based on “chips”, known as miniaturized total analysis systems (&mgr;-TAS). In fact, commercial “laboratory on a chip” devices are now available. It has long been known that the volumetric constraints imposed on the detection system used in &mgr;-TAS will dictate the utility of these techniques that are based on microfabrication. Typical injection volumes for &mgr;-TAS are in the nanoliter (10
−9
L) to picoliter (10
−12
L) range and ultimately impart severe constraints on the detection system. In short, the detection volume must be comparable to the injection volume while not sacrificing sensitivity. Yet, the development of &mgr;-TAS systems has been accompanied by the implementation, and to a much lesser extent, the improvement of “conventional” detection systems.
Most approaches for &mgr;-TAS or on-chip detection have been based on “conventional” optical measurements, primarily absorption, fluorescence or electrochemical. Unfortunately, absorbance measurements are limited in chip-scale techniques because of their inherent path length sensitivity and solute absorbtivity. The fact that the channel dimensions are normally 10-20 &mgr;m deep and 20-50 &mgr;m wide further exacerbates the S/N limitation for absorbance determinations ultimately limiting picoliter volume detection limits to the range of 0.1-0.01 mM.
With the advent of lasers, light sources possessing unique properties including high spatial coherence, monochromaticity and high photon flux, unparalleled sensitivity and selectivity in chemical analysis is possible. The advantages of using lasers in micro-chemical analysis are well known and have been demonstrated thoroughly. Over the past five years, technical advances in the laser have lead to reduced cost, enhanced reliability and availability of new wavelengths or multi-wavelength scanning systems. The result has been the demonstration of a number of high sensitivity/micro-volume detection methodologies for universal analysis. For example laser-induced fluorescence (LIF) can provide extremely low detection limits, with most laboratories able to detect as few as 10
5
molecules. In fact, recent developments in ultra-high sensitivity LIF have allowed single molecule detection to be performed ‘on-chip’. While fluorescence is an inherently sensitive detection method, it can be expensive to implement and is only applicable to solutes that are either, naturally fluorescent (the number of such molecules is actually quite small) or that can be chemically modified to fluoresce. Other approaches to on-chip detection have primarily included thermal conductivity, electroluminescence and electrochemical methods. However, these technologies are also expensive and hard to implement.
Refractive index detection is still a common technique used in chemical and biochemical analysis that has been successfully applied to several small volume analytical separation schemes. For various reasons, RI detection represents an attractive alternative to fluorescence and absorbance. First, RI detection is relatively simple. Second, it can be used with a wide range of buffer systems. Finally, RI detection is universal, theoretically allowing detection of any solute, making it particularly applicable to solutes with poor absorption or fluorescence properties. However, for a number of reasons, attempts toward implementation of RI detection in chip-scale analyses has been somewhat problematic.
Previous attempts for on-chip RI detection have generally involved the use of either waveguiding or interferometry. Among these techniques are the Mach-Zender approach, the porous silicon-based optical interferometer, surface plasmon resonance (SPR) (and related) techniques, the ‘on-chip’ spiral-shaped waveguide refractometer, and the holographic forward scatter interferometer. While each of the aforementioned RI measurement techniques can produce impressive results, they are all limited when applied to on-chip detection with chip scale analyses. In general, the path length dependency of evanescent wave-based techniques like SPR or the Mach Zender interferometer, demands a long sensing region be in contact with the separation fluid resulting in an optical “detection” volume too large to be compatible with chip-scale analyses.
The porous silicon-based optical interferometer (a Fabry-Perot system) can provide pico- and even femtomolar analyte sensitivity, but for the RI signal to be produced, this sensor requires (as do the SPR sensors) that the exogenous ‘reporter’ molecules be attached to the surface of the silicon and subsequently bind to the desired or target solute. This methodology of using molecular recognition which leads to an RI change can be used as an on-chip detector, provides solute selectively, leading inherently to high sensitivity, but is limited by reaction kinetics and the need to do sophisticated biochemistry and surface immobilization. These chemistries are normally diffusion limited and thus take time. In addition, solute events produced in CE, FIA or chip scale HPLC must be detected as they traverse the detector. Temporal constraints can be severe and range from 10's of milli-seconds to several minutes. Thus the peak must be sensed or analyzed in the probe volume during the elution time. Furthermore, technologies such as SPR do not provide the option to directly monitor &mgr;-Vol. temperature changes as are needed to study, for example, reaction kinetics or to perform on-chip flow rate sensing.
The holographic forward scatter interferometer is thus far, the most promising approach for on-chip universal or RI detection in CE, and uses a holographic grating and a forward scattering optical configuration. However, while research on this technique has clearly shown the potential for doing on-chip RI sensing, the sensitivity of the forward scatter technique employed is inherently limited because it is has a single pass optical configuration, e.g. the probe beam traverses only once through the detection channel.
In view of the foregoing, a need still remains for an RI detection technique that is sensitive, universal can probe ultra-small volumes, is compatible with the chip-based format and can be employed for temperature and flow rate sensing of ultra-small volumes.
SUMMARY OF THE INVENTION
The present invention fulfills the need for a new sensing me
Bornhop Darryl J.
Markov Dmitry
Swinney Kelly
Jones Tullar & Cooper PC
Kim Robert
Natividad Phil
Texas Tech University
LandOfFree
Interferometric detection system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interferometric detection system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interferometric detection system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2853205