Interferometric cyclic error compensation

Optics: measuring and testing – By light interference – Having light beams of different frequencies

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S509000, C356S498000

Reexamination Certificate

active

06806961

ABSTRACT:

BACKGROUND
This invention relates to interferometers, e.g., displacement measuring and dispersion interferometers that measure displacements of a measurement object such as a mask stage or a wafer stage in a lithography scanner or stepper system, and also interferometers that monitor wavelength and determine intrinsic properties of gases.
Displacement measuring interferometers monitor changes in the position of a measurement object relative to a reference object based on an optical interference signal. The interferometer generates the optical interference signal by overlapping and interfering a measurement beam reflected from the measurement object with a reference beam reflected from the reference object.
In many applications, the measurement and reference beams have orthogonal polarizations and different frequencies. The different frequencies can be produced, for example, by laser Zeeman splitting, by acousto-optical modulation, or internal to the laser using birefringent elements or the like. The orthogonal polarizations allow a polarizing beam splitter to direct the measurement and reference beams to the measurement and reference objects, respectively, and combine the reflected measurement and reference beams to form overlapping exit measurement and reference beams. The overlapping exit beams form an output beam that subsequently passes through a polarizer. The polarizer mixes polarizations of the exit measurement and reference beams to form a mixed beam. Components of the exit measurement and reference beams in the mixed beam interfere with one another so that the intensity of the mixed beam varies with the relative phase of the exit measurement and reference beams. A detector measures the time-dependent intensity of the mixed beam and generates an electrical interference signal proportional to that intensity. Because the measurement and reference beams have different frequencies, the electrical interference signal includes a “heterodyne” signal having a beat frequency equal to the difference between the frequencies of the exit measurement and reference beams. If the lengths of the measurement and reference paths are changing relative to one another, e.g., by translating a stage that includes the measurement object, the measured beat frequency includes a Doppler shift equal to 2 &ngr;np/&lgr;, where v is the relative speed of the measurement and reference objects, &lgr; is the wavelength of the measurement and reference beams, n is the refractive index of the medium through which the light beams travel, e.g., air or vacuum, and p is the number of passes to the reference and measurement objects. Changes in the relative position of the measurement object correspond to changes in the phase of the measured interference signal, with a 2&pgr; phase change substantially equal to a distance change L of &lgr;/(np), where L is a round-trip distance change, e.g., the change in distance to and from a stage that includes the measurement object.
Unfortunately, this equality is not always exact. Many interferometers include nonlinearities such as what are known as “cyclic errors.” The cyclic errors can be expressed as contributions to the phase and/or the intensity of the measured interference signal and have a sinusoidal dependence on the change in optical path length pnL. In particular, the first order cyclic error in phase has a sinusoidal dependence on (2&pgr;pnL)/&lgr; and the second order cyclic error in phase has a sinusoidal dependence on 2(2&pgr;pnL)/&lgr;. Higher order cyclic errors can also be present.
Cyclic errors can be produced by “beam mixing,” in which a portion of an input beam that nominally forms the reference beam propagates along the measurement path and/or a portion of an input beam that nominally forms the measurement beam propagates along the reference path. Such beam mixing can be caused by ellipticity in the polarizations of the input beams and imperfections in the interferometer components, e.g., imperfections in a polarizing beam splitter used to direct orthogonally polarized input beams along respective reference and measurement paths. Because of beam mixing and the resulting cyclic errors, there is not a strictly linear relation between changes in the phase of the measured interference signal and the relative optical path length pnL between the reference and measurement paths. If not compensated, cyclic errors caused by beam mixing can limit the accuracy of distance changes measured by an interferometer. Cyclic errors can also be produced by imperfections in transmissive surfaces that produce undesired multiple reflections within the interferometer and imperfections in components such as retroreflectors and/or phase retardation plates that produce undesired ellipticities in beams in the interferometer. For a general reference on the theoretical cause of cyclic error, see, for example, C. W. Wu and R. D. Deslattes, “Analytical modelling of the periodic nonlinearity in heterodyne interferometry,”
Applied Optics,
37, 6696-6700, 1998.
In dispersion measuring applications, optical path length measurements are made at multiple wavelengths, e.g., 532 nm and 1064 nm, and are used to measure dispersion of a gas in the measurement path of the distance measuring interferometer. The dispersion measurement can be used to convert the optical path length measured by a distance measuring interferometer into a physical length. Such a conversion can be important since changes in the measured optical path length can be caused by gas turbulence and/or by a change in the average density of the gas in the measurement arm even though the physical distance to the measurement object is unchanged. In addition to the extrinsic dispersion measurement, the conversion of the optical path length to a physical length requires knowledge of an intrinsic value of the gas. The factor &Ggr; is a suitable intrinsic value and is the reciprocal dispersive power of the gas for the wavelengths used in the dispersion interferometry. The factor &Ggr; can be measured separately or based on literature values. Cyclic errors in the interferometer also contribute to dispersion measurements and measurements of the factor &Ggr;. In addition, cyclic errors can degrade interferometric measurements used to measure and/or monitor the wavelength of a beam.
SUMMARY
The invention relates to the compensation of cyclic errors in interferometric measurements, such as those used in microlithography systems that fabricate integrated circuits. The interferometric measurements can include changes in a linear displacement of an object, changes in angular orientation of an object, and/or changes in the propagation direction of an optical beam. A number of the embodiments involve heterodyne interferometry and the calculation of a superheterodyne signal corresponding to the product of two signals derived from corresponding intensity measurements of interferometric output beams having orthogonal linear polarizations. The phase of the superheterodyne signal provides information about the different paths traversed by the reference and measurement beam components of the interferometric output beams (e.g., a displacement and/or angle measurement). The calculation of the superheterodyne signal eliminates or substantially reduces first-order cyclic error terms in its phase, thereby improving the accuracy of the information derived from the phase of the superheterodyne signal.
Moreover, the elimination or reduction of the first-order cyclic error contribution to the superheterodyne phase is independent of many aspects of the electronics used to generate the superheterodyne signal. Such aspects include differences in the sensitivity of the detectors used to measure the intensity of the output beams, and differences in the gains of the preamplifiers and/or amplifiers that amplify those intensities and related downstream signals. In addition, the calculation of the superheterodyne signal increases the phase resolution of the interferometer system by a factor of 2.
In one embodiment, for example, the invention features a method that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interferometric cyclic error compensation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interferometric cyclic error compensation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interferometric cyclic error compensation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3291978

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.