Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2001-04-27
2004-11-23
Jastrzab, Jeffrey R. (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
Reexamination Certificate
active
06823208
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an interface unit for use in an electrophysiology measurement system.
2. Description of the Prior Art
Electrophysiological measurement systems generally have a monitoring system for one or more of receiving, storing, processing and displaying signals from a number of patient interactive elements such as catheter-mounted intracardiac electrodes, surface ECG electrodes, blood parameter sensors, and similar physiological parameter sensors and an interface unit. The monitoring system often includes a switching unit by which measurements may be selectively made using different combinations of intracardiac electrode signals.
The interface unit is typically provided at bedside to receive the respective proximal ends of wires which are connected at their distal ends to the patient-interactive elements and provide for their electrical connection in a selectable optional manner to the switching unit of the monitoring system. The wires are received by the interface unit in releasable engagement with input terminals which, for the intracardiac electrodes are often arranged at the outer surface of the unit in a grid fashion, or so as to receive a multi-pin connector of a particular catheter. An output socket or permanent lead is provided for electrical connection to a connector in the monitoring system and comprises contacts connected to and arranged in a fixed correspondence with the input terminals. Which electrode wire connects to which terminal is dependent largely on the combination of catheters being used for a particular electrophysiology examination, the nature of that study and how the monitoring system is configured to receive the electrical signals.
The monitoring system may actually be provided with connectors for several interface units. Each connector then establishes electrical channels for signals from an associated interface unit by which the signals are supplied to a corresponding amplifier board where they are amplified and otherwise conditioned before they are operated on by the switching unit.
Before undertaking any electrophysiology examination, the measurement system must be initially set-up so that the correct catheter wires are mated with the correct terminals on the interface unit so that the correct measurements are made during the examination. To facilitate this set-up it is known to provide an interface unit wherein each terminal is permanently labeled in numerical sequence for identification purposes. Each wire of a particular catheter is usually provided with an identifying label by the manufacturer. Look-up tables can be constructed using these two sets of labels to indicate the wire/terminal mating configuration required for a particular examination. A wipe-clean surface may be available on the interface unit so that a label can be provided for each terminal used in the study which identifies the catheter electrode wire to be inserted according to the look-up table.
A problem may occur with this known electrophysiology measurement system when attempting to check if the correct wire is connected to the correct connector for a particular electrophysiology measurement. This is compounded by the fact that the monitoring system and the interface unit are often situated some distance apart and linked through a maze of wires.
To alleviate this problem it is known to provide an electrophysiology measurement system in which the monitoring system identifies itself to the interface unit. This is done by arranging for the monitoring system to generate an identifier on the interface unit, for example by lighting a colored diode or providing an alphanumeric code, which corresponds to an identifier for the connector to which the interface unit is connected. The user then can determine which unit is connected to which connector by a simple visual inspection of the identifier generated on the interface unit but not if the correct unit is connected to a connector. However, this solution does not readily assist the user in identifying whether the correct labels are provided on the correct interface unit.
Additionally, at least during the initial set-up of the monitoring system the wire/input terminal mating configuration of the interface unit necessary for a particular electrophysiology examination must be entered manually into the system and the correspondence checked with the actual configuration provided by the interface unit. This procedure often involves two persons, one at the interface unit and one at the monitoring system, one announcing the desired configuration to the other, who then either establishes the correct wire/terminal connection or enters the information into the monitoring system. This procedure typically needs to be repeated every time the electrophysiology examination is varied and provides an opportunity for user input error, which at best can cause errors in the data analysis and at worst can cause injury to the patient.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an interface unit, and an electrophysiological measurement system employing such an interface unit, which simplifies set-up procedures and minimizes errors in set-up procedures.
The above object is achieved in accordance with the principles of the present invention in an interface unit, and in an electrophysiology measurement system employing such an interface unit, wherein the interface unit has a number of externally accessible female connectors which respectively releasably mate with male connectors of wires from a combination of catheter-mounted sensors in the electrophysiology measurement system, an arrangement for providing predetermined interconnections among said female connectors and being couplable to an electrophysiology monitoring system of the measurement system, and a signal generator connected to the arrangement, which generates an output signal containing information unique to and originating from the interface unit, the output signal being supplied to the electrophysiology monitoring system via the arrangement for use by the electrophysiology monitoring system.
By providing a unit which can generate an output signal containing information which can, for example, identify either or both the housing and a label layer (if provided) to an electrophysiology monitoring system, or provide set-up protocols for use by the system, then an automatic determination of the correct connections for a desired electrophysiology exam can be made automatically by the system and the potential for errors during a set-up procedure can at least be reduced, if not avoided.
Preferably, the interface unit has a removable label layer selectable from a library of label layers having a visible indication of a particular wire/connector mating configuration, permanently fixed at a surface thereof together with an element, such as a bar code label, useable to generate the output signal particular to the layer. This enables catheter wire connections to be rapidly established and varied whilst automatically providing information identifying the connections when the element is read by an appropriate reader, such as a conventional bar code reader.
The interface unit may provide the output signal which identifies to the electrophysiology monitoring system the electrophysiology study to be performed, by generating, for example, a coded reference to the exam or by generating a protocol useable to configure signal switches within the monitoring system in order to carry out the study. This further automates the set-up procedure and thereby reduces the potential for user input error.
REFERENCES:
patent: 3805116 (1974-04-01), Nehmann
patent: 4695955 (1987-09-01), Faisandier
patent: 5425361 (1995-06-01), Fenzlein et al.
patent: 5640967 (1997-06-01), Fine et al.
patent: 5669393 (1997-09-01), Faisandier
patent: 5776057 (1998-07-01), Swenson et al.
patent: 5821405 (1998-10-01), Dickey et al.
patent: 6234830 (2001-05-01), Ensz et al.
patent: 6488530 (2002-12-01), Ohlsson
patent: 866 536 (1949-07-01), None
Jastrzab Jeffrey R.
Oropeza Frances P.
Schiff & Hardin LLP
Siemens Aktiengesellschaft
LandOfFree
Interface unit for an electrophysiology measurement system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interface unit for an electrophysiology measurement system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interface unit for an electrophysiology measurement system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289840