Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
1999-11-22
2001-10-23
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S724000, C361S730000, C361S731000, C361S752000
Reexamination Certificate
active
06307750
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to the field of interface panels, and in particular, to an interface panel for providing telecommunication signals to a plurality of electronic modules housed within an electronics cabinet.
BACKGROUND OF THE INVENTION
Conventional electronic modules for high-speed telecommunication and networking applications are typically housed in a cabinet that is specifically designed to house such electronic modules. Typically, a vertically oriented rack is positioned within the cabinet, and the electronic modules are fastened to the rack. The electronic modules are stacked one on top of the other in a vertically stacked configuration.
Telecommunication signals must be routed to and from the plurality of electronic modules within the cabinet. This is typically accomplished by providing a communications panel mounted to the rack within the cabinet. The communications panel is typically mounted adjacent the backside of the cabinet to allow a technician to access the panel. One side (i.e. the front side) of the communications panel typically includes 176 standard RJ48 connectors. In particular, the RJ48 connectors are mounted to the communications panel so that the connectors face outward toward the backside of the cabinet. The technician may then access the backside of the cabinet and rout up to 176 input cables to the connectors on the communications panel. The 176 input cables are typically routed into the cabinet from the top or bottom of the cabinet.
Output cables are typically positioned on the other side of the communications panel, and one end of each of the output cables is typically hardwire to the RJ48 connectors mounted to the panel. The other end of each of the output cables typically includes a RJ48 connector that is configured to mate with any one of the socket connectors mounted within the electronic modules.
There are several disadvantages with these conventional communications panels. First, the size of conventional communications panels is large due to the large number of RJ48 connectors (typically 176 RJ connectors) that are required to provide telecommunications signals to the plurality of electronic modules within the cabinet. These cabinets typically have strict dimensional requirements, and the large size of conventional communications panels greatly reduces the amount space in the cabinet that could otherwise be used for other various electronic functions. Moreover, routing 176 individual cables into the cabinet also requires a large amount of physical space, and may block the required airflow through the cabinet, which may result in the overheating of the various electronic modules within the cabinet.
In addition, a technician must rout and connect 176 input cables to the 176 connectors on the communications panel. The large number of connections increases the installation time, and also increases the chance that the input cables will not be routed properly. Finally, the large number of input cables and connectors on the communications panel greatly increases the time required to debug the system in the event there is a failure in one or more of the connections.
Accordingly, it would be desirable to have an interface panel for providing telecommunication signals to a plurality of electronic modules housed within an electronics cabinet that overcomes the disadvantages described above.
SUMMARY OF THE INVENTION
One aspect of the invention provides an interface panel for providing telecommunication signals to a plurality of electronic modules housed within an electronics cabinet. A bracket member includes a plurality of openings. A plurality of connectors for receiving a plurality of input cables is positioned within the plurality of openings and is mounted to the bracket. Each of the plurality of connectors includes at least fifteen conductive pins. A plurality of output cables operatively coupled to each of the plurality of connectors is also provided. The plurality of output cables may preferably be comprised of eleven output cables. Each of the plurality of output cables is operatively coupled to a predetermined set of the at least fifteen conductive pins. Each of the plurality of output cables further includes an adapter for connection to one of the plurality of electronic modules. The at least fifteen conductive pins may preferably be comprised of sixty-four conductive pins. The adapter may preferably be a RJ48 adapter. The bracket member may preferably be a planar member, and may be comprised of a conductive material. Each of the plurality of output cables may preferably be hardwired to each of the plurality of connectors. Each of the plurality of output cables may preferably be hardwired to the predetermined set of the at least fifteen conductive pins. The predetermined set of the plurality of the at least fifteen conductive pins may preferably be comprised of at least four conductive pins. The plurality of output cables operatively coupled to one of the plurality of connectors may preferably be bundled together. The plurality of openings may preferably be comprised of sixteen openings, and the plurality of connectors may preferably be comprised of sixteen connectors.
Another aspect of the invention provides a system for providing telecommunications signals to a plurality of electronic modules housed in an electronics cabinet. A plurality of electronic modules is positioned within an electronics cabinet. An interface panel including a bracket member is mounted within the cabinet. The bracket member includes a plurality of openings. A plurality of connectors for receiving a plurality of input cables is positioned within the plurality of openings and is mounted to the bracket. Each of the plurality of connectors includes at least fifteen conductive pins. A plurality of output cables is operatively coupled to each of the plurality of connectors. Each of the plurality of output cables is operatively coupled to a predetermined set of the at least fifteen conductive pins. Each of the plurality of output cables includes an adapter for connection to one of the plurality of electronic modules. The at least fifteen conductive pins may preferably be comprised of sixty-four conductive pins. The adapter may preferably be a RJ48 adapter. A vertically oriented rack may preferably be housed within the cabinet, and each of the plurality electronic modules may preferably be fastened to the rack. The bracket member of the interface panel may preferably be fastened to the rack adjacent a back portion of the electronics cabinet. Each of the plurality of input cables may preferably include an input connector adapted to mate with the plurality of connectors. Each of the plurality of electronic modules may preferably include at least one socket adapted to receive the adapter.
Another aspect of the invention provides a method of providing telecommunication signals to a plurality of electronic modules housed within an electronics cabinet. A bracket member including a plurality of openings is provided. A plurality of connectors is also provided. Each of the plurality of connectors includes at least fifteen conductive pins. A plurality of output cables is also provided. Each of the plurality of cables includes an adapter. The plurality of connectors is positioned within the plurality of openings and is mounted to the bracket. Each of the plurality of output cables is operatively coupled to a predetermined set of the at least fifteen conductive pins. The at least fifteen conductive pins may preferably be comprised of sixty-four conductive pins. A plurality of input cables may preferably be provided. Each of the plurality of input cables may preferably include an input connector adapted to mate with one of the plurality of connectors, and the plurality of input cables may preferably be connected to the plurality of connectors. Each of the plurality of electronic modules may preferably include at least one socket adapted to receive the adapter, and the adapter may preferably be inserted into the at least one socket of one of the plurali
Bendikas Laura M.
DiGiacomo Joseph
3Com Corporation
Baniak Pine & Gannon
Picard Leo P.
Vortman Anatoly
LandOfFree
Interface panel apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interface panel apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interface panel apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2580231