Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-04-19
2003-06-17
Layno, Carl (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S032000, C607S030000, C600S509000
Reexamination Certificate
active
06580948
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to external medical instruments that are in physical contact with a patient's body to communicate with or test the function of implantable medical devices (IMDs) implanted in the patient's body or to provide a therapy or to measure a physiologic condition of the patient's body and capable of communicating with other medical instruments or systems located at a distance from the patient, and particularly to safety systems for protecting the patient from harm due to electrical potentials.
2. Description of the Prior Art
In the field of programmable IMDs, it has become common to provide an interactive, transceiver system for both remotely programming operating functions, modes and parameters of the implanted device, and for telemetering out data related thereto on command by RF telemetry to an external medical device, commonly denoted a “programmer”. Such IMDs include cardiac pacemakers, cardiac and other physiologic monitors, implantable drug dispensers, nerve, muscle, and brain stimulators of various types, cochlear implants, blood pumps, cardiomyostimulators, and tachyarrhythmia-control devices, e.g., implantable cardioverter/defibrillators (ICDs) for delivery of staged therapies to the ventricles and/or the atria, etc., to treat tachyarhythmias.
At the present time, both analog and digital information or data is typically transmitted by uplink RF telemetry from such IMDs to the external programmer upon receipt of a downlink telemetry interrogation command from the external programmer. The analog information has typically included battery voltage, physiologic signal amplitudes sensed in real time from sensors or sense electrodes, e.g., sampled cardiac electrocardiogram or EGM amplitude values, and, in the case of implanted pacemaker and ICD IPGs, pacing pulse and/or cardioversion shock amplitude, energy, and pulse width and lead impedance. Digital information includes digitized operating data, e.g., markers signifying device operations and data typically stored in RAM or ROM and transmitted in response to an interrogation command from such IMDs. Such stored data includes historic statistics related to device performance, episodic physiologic data stored in response to detection of an episode of interest or delivery of a therapy, e.g., cardiac electrogram (EGM) segments, current programmed operating modes and parameter values, implant data, and patient and IMD identifier codes. Uplink telemetry is therefore employed to interrogate the IMD functions and memory and to confirm re-programming of operating modes and parameter values programmed in a downlink telemetry transmission.
Since the time that such telemetry systems first became available, IMDs have proliferated in types and successive models or generations of each type that have been steadily improved in longevity and designed with increased programmable functions and capabilities. At first, in some instances, a single external programmer was designed to function with a single type or family of IMDs that could not be used to program or interrogate other IMD types or families or new generations thereof. A new programmer would have to be provided to the physicians as successive programmable IMD models and IMD functions became clinically available. In some instances, this problem was perceived and dealt with by providing the capability of upgrading the programmer so that it could communicate with the newly available IMDs and at least confirm the identity of the IMD during a programming session for safety and record keeping reasons before proceeding to the programming and interrogation functions.
Medtronic, Inc. and other manufacturers developed microprocessor-based programmers that operated using software routines provided by dedicated, plug-in ROM modules or cartridges to enable the operation of the programming and interrogation telemetry with regard to specific model or series of models of IMDs. In such systems, the programmer is incapable of communicating with a given IMD model unless the appropriate plug-in module or cartridge is first installed. For example, for many years, particular Medtronic® MemoryMod® ROM cartridges were developed and supplied to enable the physician to upgrade the programmer to program and interrogate a specific set of new generation Medtronic® pacemaker implantable pulse generator models.
More sophisticated, computer based programmers have been developed that also can be upgraded, including, for example, the Medtronic® Model 9710 and 9760 programmers and the more recent Medtronic® Model 9766 and 9790 programmers which employ the Medtronic® Model 9765 programming head. It is possible to load updated software for programming new generation IMDs onto a hard disk drive from floppy disks or compact discs or through a modem and many of the other alternative ways that programs are added to personal computers, for example.
Telemetry sessions between an IMD and the external programmer are typically initiated and conducted in the manner described in commonly assigned, U.S. Pat. Nos. 5,168,871 and 5,683,432. Current telemetry systems are designed to provide two-way telemetry by RF signal transmission and linkage between an antenna coil contained in the IMD canister and an antenna coil or coils contained in the programming head of the external programmer. Typically, the programming head is placed against the patient's skin overlying the IMD, and a communications link is established as depicted and described in the above-referenced '871 patent by closure of a reed switch within the IMD by the magnetic field of a permanent magnet incorporated into the programming head. Uplink telemetry of analog and digital data of the IMD and downlink telemetry of programming and interrogation commands to the IMD is conducted in a telemetry session according to a telemetry format that is related to the particular IMD.
Programmers and IMDs have also been disclosed that transmit and receive programming instructions and data at high frequencies employing very small antennae and that eliminate the need for the closure of the reed switch by the external magnet during programming.
FIG. 1
is a simplified view of the typical bidirectional telemetry communication between a prior art external programmer
26
and an IMD comprising a cardiac pacemaker implantable pulse generator (IPG)
12
and an associated lead
14
, for example, employing the programming head
20
. The IPG
12
is implanted in the patient
10
beneath the patient's skin and typically oriented to the skin surface as is typical in the implantation of any programmable and interrogatable IMD. The IPG
12
is electrically coupled to the heart
18
of the patient
10
through pace/sense electrodes and lead conductor(s) of at least one cardiac pacing lead
14
in a manner known in the art. The IPG
12
contains an operating system that may employ a microcomputer or a digital state machine for timing sensing and pacing functions in accordance with a programmed operating mode. The IPG
12
also contains sense amplifiers for detecting cardiac signals, patient activity sensors or other physiologic sensors for sensing the need for cardiac output, and pulse generating output circuits for delivering pacing pulses under control of the operating system in a manner well known in the prior art. The operating system includes memory registers or RAM for storing a variety of programmed-in operating mode and parameter values that are used by the operating system. The memory registers or RAM may also be used for storing data compiled from sensed cardiac activity and/or relating to operating history for telemetry out on receipt of a retrieval or interrogation instruction. All of these functions and operations are well known in the art, and many are employed in other programmable, IMDs to store operating commands and data for controlling device operation and for later retrieval to diagnose device function or patient condition.
Programming commands or data are transmitted between an IPG tele
Haupert David J.
Kruse John M.
Levan Charles R.
Winkler Thomas J.
Girma Wolde-Michael
Layno Carl
Medtronic Inc.
LandOfFree
Interface devices for instruments in communication with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Interface devices for instruments in communication with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interface devices for instruments in communication with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3121093